the topic to the best of our knowledge, there are no reports
on the synthesis of pyranopyridones based on a formal
[3 þ 3] reaction.7
Following our early success utilizing citral as the
unsaturated aldehyde component, the quest for optimal
reaction conditions revealed that even in the absence of
piperidine the reaction proceeds in lower yields (23ꢀ27%)
but without the formation of 1,4-adduct (entries 2 and 3,
Table 1). This result, which comes in contrast to the reported
studies by Hsung,6 can be rationalized by an internal
pyridoneꢀiminium aldehyde activation.
Table 1. Optimization of Formal [3 þ 3] Reactiona
base
tempb
time
yieldd
(%)
Figure 1. (A) Selected natural pyranopyridones and (B) lead
experiments to pyranopyridones.
entry
(x equiv)
(°C)
solvent
EtOH
(min)
1
2
piperidine (1)
none
150
150
150
60
10
10
20
10
10
10
15
15
15
15
15
10
15
53
EtOH
EtOH
EtOH
EtOH
EtOH
EtOH
H2O
23
4-hydroxypyrid-2-one (3) was heated with citral (9) in the
presence of an equivalent amount of piperidine in ethanol
the [3 þ 3] adduct 10 was isolated in 53% yield (entry 1,
Table 1).
3
none
27
4
piperidine (1)
piperidine (0.3)
piperidine (1)
piperidine (0.3)
piperidine (0.3)
piperidine (0.3)
piperidine (0.3)
piperidine (0.3)
DMAP (1)
13
5
100
100
100
100
100
100
100
150
100
68
6
67
Regardless of the several examples that have been
amassed in the literature demonstrating the capacity of
pericyclic reactions in biosynthetic routes of natural pro-
ducts, only lately have pericyclic reactions been considered
as convenient, selective, and powerful bond-forming pro-
cesses with application in the construction of complex
molecules.5 In an elegant array of publications, Hsung’s
and Hua’s groups demonstrated the ability of unsaturated
aldehydes to react with dicarbonyl compounds to prepare
pyranoheterocycles.6 Despite their extensive research on
7
87
8
5
9
THF
72
10
11
12
13
CH3CN
EtOH/H2Oc
EtOH
EtOH
60
45
37
proline (0.3)
70 (0% ee)
a Conditions: substrate 3 (0.16 mmol), citral (9, 0.16 mmol, 1.0 equiv),
base (x equiv), solvent (0.4 mL, 0.4 M). b Heating under MW irradiation.
c Ratio 1:1. d Isolated yields.
(6) (a) Hsung, R. P.; Shen, H. C.; Douglas, C. J.; Morgan, C. D.;
Degen, S. J.; Yao, L. J. J. Org. Chem. 1999, 64, 690–691. (b) Shen, H. C.;
Wang, J.; Cole, K. P.; McLaughlin, M. J.; Morgan, C. D.; Douglas,
C. J.; Hsung, R. P.; Coverdale, H. A.; Gerasyuto, A. I.; Hahn, J. M.; Liu,
J.; Sklenicka, H. M.; Wei, L.; Zehnder, L. R.; Zificsak, C. A. J. Org.
Chem. 2003, 68, 1729–1735. (c) Hua, D. H.; Chen, Y.; Sin, H.-S.;
Maroto, M. J.; Robinson, P. D.; Newell, S. W.; Perchellet, E. M.;
Ladesich, J. B.; Freeman, J. A.; Perchellet, J.-P.; Chiang, P. K. J. Org.
Chem. 1997, 62, 6888–6896. (d) McLaughlin, M. J.; Shen, H. C.; Hsung,
R. P. Tetrahedron Lett. 2001, 42, 609–613. (e) Buchanan, G. S.; Dai, H.;
Hsung, R. P.; Gerasyuto, A. I.; Scheinebeck, C. M. Org. Lett. 2011, 13,
4402–4405.
(7) The closest literature precedent concerning the preparation of
hydroxy quinolones: (a) McLaughlin, M. J.; Hsung, R. P. J. Org. Chem.
2001, 66, 1049–1053. For selected publications on the preparation of
pyranopyridones, see: (b) Fan, X.; Feng, D.; Qu, Y.; Zhang, X.; Wang,
J.; Loiseau, P. M.; Andrei, G.; Snoeck, R.; De Clercq, E. Biorg. Med.
Chem. Lett. 2010, 20, 809–813. (c) Magedov, I. V.; Manpadi, M.;
Ogasawara, M. A.; Dhawan, A. S.; Rogelj, S.; Van slambrouck, S.;
Steelant, W. F. A.; Evdokimov, N. M.; Uglinskii, P. Y.; Elias, E. M.;
Knee, E. J.; Tongwa, P.; Antipin, M. Y.; Kornienko, A. J. Med. Chem.
2008, 51, 2561–2570. (d) Magedov, I. V.; Manpadi, M.; Evdokimov,
N. M.; Elias, E. M.; Rozhkova, E.; Ogasawara, M. A.; Bettale, J. D.;
Przheval’skii, N. M.; Rojelj, S.; Kornienko, A Biorg. Med. Chem. Lett.
2007, 17, 3872–3876.
Lowering the microwave temperature to 100 °C led to
cleaner reactions even when longer reaction times were
applied avoiding the formation of dipyridone byproduct
(entries 6 and 7, Table 1). Substoichiometric quantities of
piperidine at 0.3 equiv did not affect the yield (entry 5),
while ethanol was established as the optimal solvent
(entries 8ꢀ11). Other bases, including chiral proline, had
inferior results. In the case of proline, no enantioselectivity
was observed, indicating a mechanism through the forma-
tion of an achiral oxatriene intermediate.
To further support our mechanistic assumption, an
internal trap of the hypothetical oxatriene intermediate
was envisioned. Thus, when electron-rich aromatic alde-
hyde 11 was applied on our optimal reaction conditions no
electrocyclization reaction was observed, but instead com-
pound 14 was isolated in 22% yield through an intramo-
lecular FriedelꢀCrafts-type reaction on the oxatriene
intermediate (Scheme 1).
Org. Lett., Vol. 14, No. 22, 2012
5665