Macromolecules
Article
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors are grateful to Dr. Richard E. Lyon of Federal
Aviation Administration (FAA) for the evaluation of HRC of
the benzoxazole resin.
REFERENCES
■
(1) Holmes, G. A.; Rice, K.; Snyder, C. R. J. Mater. Sci. 2006, 41,
4105−4116.
(2) Fukukawa, K.; Ueda, M. Macromolecules 2006, 39, 2100−2106.
(3) Dotrong, M. H.; Evers, R. C.; Moore, G. J. Polym. Prepr. 1990, 31,
675−676.
(4) Ueda, M.; Sugita, H.; Sato, M. J. Polym. Sci., Polym. Chem. Ed.
1986, 24, 1019−1026.
(5) Reinhardt, B. A. Polym. Commun. 1990, 31, 453−454.
(6) Walsh, P. J.; Hu, X.; Cunniff, P.; Lesser, A,J J. Appl. Polym. Sci.
2006, 102, 3517−3525.
Figure 10. 13C CP MAS spectrum of p-amide benzoxazine monomer
at nascent and 250 °C for 1 h.
(7) Park, E. S.; Sieber, J.; Guttman, C.; Rice, K.; Flynn, K.; Watson,
S.; Homes, G. Anal. Chem. 2009, 81, 9607−9617.
(8) Kubota, T.; Nakanishi, R. J. Polym. Sci., Part B 1964, 2, 655−659.
(9) Moyer, W. W.; Cole, C.; Anyos, T. J. Polym. Sci., Part A 1965, 3,
2107−2121.
azine. This difference between the ortho- and para-model
compounds is a strong support of the proposed benzoxazole
formation in the o-amide-containing polybenzoxazine and in
accordance with other aforementioned evidence by FTIR, DSC,
and TGA analyses.
(10) Imai, Y.; Uno, K.; Iwakura, Y. Makromol. Chem. 1965, 83, 179−
187.
(11) Ueda, M.; Ebara, K.; Shibasaki, Y. J. Photopolym. Sci. Technol.
2003, 16, 237−242.
(12) Tullos, G. L.; Powers, J. M.; Jeskey, S. J.; Mathias, L. J.
Macromolecules 1999, 11, 3598−3612.
(13) Okabe, T.; Morikawa, A. High Perform. Polym. 2008, 20, 53−66.
(14) Park, H. B.; Jung, C. H.; Lee, Y. M.; Hill, A. J.; Pas, S. J.; Mudie,
S. T.; Wagner, E. V.; Freeman, B. D.; Cookson, D. J. Science 2007, 318,
254−258.
(15) Schab-Balcezak, E.; Jikei, M.; Kamimoto, M. Polym. J. 2003, 35,
208−212.
(16) Guzman-Lucero, D.; Likhatcher, D. Polym. Bull. 2002, 48, 261−
269.
(17) Chen, B. K.; Tsai, Y. J.; Tsay, S. Y. Polym. Int. 2006, 55, 93−100.
(18) Hodgkin, J. H.; Dao, B. N. Eur. Polym. J. 2009, 45, 3081−3092.
(19) Kim, S.; Pearce, E. M.; Kwei, T. K. Polym. Adv. Technol. 1990, 1,
49−73.
(20) Kim, S. S.; Pearce, E. M. Makromol. Chem. Suppl. 1989, 15,
187−218.
Heat release rate (HRR) is governed by the heat release
capacity (HRC) which is the maximum amount of heat released
by combustion per degree of temperature rise per unit mass of
polymer in the mesophase. HRC is considered as a semi-
quantitative predictor of fire performance and flammability of
materials which is related to flame resistance. HRR and HRC
for a set of polybenzoxazine derived from amide-functional
benzoxazines have been evaluated to be ∼92 J/(g K). In
general, the lower the values of both HRC and HRR, the higher
the flame resistance. The HRC value of polybenzoxazole
thermoset was one of the lowest among 47 polymers studied by
Lyon et al.26 Furthermore, this new class of thermoset polymers
is better than poly(ether imide) which shows HRC of 121 J/(g
K) and UL-94 rating of V0. It has been concluded that this
novel class of polymers has excellent flame resistance; a detailed
study will be published elsewhere.
(21) Ishida, H. In Handbook of Benzoxazine Resins; Ishida, H., Agag,
T., Eds.; Elsevier: Amsterdam, 2011; pp 3−81.
(22) Agag, T.; Arza, C. T.; Maurer, F. H. J.; Ishida, H. Macromolecules
2010, 43, 2748−2758.
(23) Hemvician, K.; Ishida, H. Polymer 2002, 43, 4391−4402.
(24) Hsiao, S. H.; Huang, Y. H. Eur. Polym. J. 2004, 40, 1127−1135.
(25) Yang, G.; Matsuzono, S.; Koyama, E.; Kokuhisa, H.; Hiratani, K.
Macromolecules 2001, 34, 6545−6547.
(26) Lyon, R. E.; Janssens, M. L. Polymer Flammability. U.S.
Department of Transportation, Federal Aviation Administration,
Report #DOT/FAA/AR-05/14.
4. CONCLUSION
A new class of cross-linkable polybenzoxazole (PBO), namely
benzoxazole resin, has been successfully developed. The in-situ
thermal conversion of amide-functional benzoxazines as smart
class of polybenzoxazine precursors has been proposed as an
alternative approach to the traditional PBO formation. Using
the tremendous molecular design flexibility of these novel
polybenzoxazole precursors, which cannot be found in the
traditional concept for polybenzoxazole formation, it has
become possible to produce polybenzoxazoles through easily
processable precursors. The water is produced due to the
endothermic nature of cyclodehydration reaction of this class of
smart polybenzoxazines when producing polybenzoxazole,
which provides an additional advantage for fire retardancy.
The greatest advantage of this concept is that the benzoxazole
resin is obtained from a low molecular weight compound
(resin) unlike the high molecular weight poly(o-hydroyamide)s.
AUTHOR INFORMATION
Corresponding Author
■
G
dx.doi.org/10.1021/ma300924s | Macromolecules XXXX, XXX, XXX−XXX