Page 5 of 7
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
(14) For a review, see: Keess, S.; Oestreich, M. Cyclohexa-1,4-dienes in
Humboldt Foundation (Theodor Heuss Fellowship to J.C.L.W.,
2017–2018), and the Deutsche Forschungsgemeinschaft (Oe
249/18-1). M.O. is indebted to the Einstein Foundation Berlin for
an endowed professorship. We thank Dr. Alice Lefranc for her
initial attempts to prepare HI surrogates based on benzene and
Emin Topal for his experimental contributions (both TU Berlin).
transition-metal-free ionic transfer processes. Chem. Sci. 2017, 8,
4688–4695.
(15) For a review of transfer hydrosilylation, see: (a) Oestreich, M.
Transfer Hydrosilylation. Angew. Chem., Int. Ed. 2016, 55, 494–499.
(b) Simonneau, A.; Oestreich, M. 3-Silylated Cyclohexa-1,4-dienes
as Precursors for Gaseous Hydrosilanes: The B(C6F5)3-Catalyzed
Transfer Hydrosilylation of Alkenes. Angew. Chem., Int. Ed. 2013,
52, 11905–11907. (c) Simonneau, A.; Oestreich, M. Formal SiH4
chemistry using stable and easy-to-handle surrogates. Nat. Chem.
2015, 7, 816–822.
(16) Chatterjee, I.; Qu, Z.-W.; Grimme, S.; Oestreich, M.
B(C6F5)3-Catalyzed Transfer of Dihydrogen from One Unsaturated
Hydrocarbon to Another. Angew. Chem., Int. Ed. 2015, 54, 12158–
12162.
(17) For related transfer processes using cyclohexa-1,3-diene-based
surrogates, see: Yuan, W.; Orecchia, P.; Oestreich, M.
Cyclohexa-1,3-diene-based dihydrogen and hydrosilane surrogates
in B(C6F5)3-catalysed transfer processes. Chem. Commun. 2017, 53,
10390–10393.
(18) Chatterjee, I.; Oestreich, M. Brønsted Acid-Catalyzed Transfer
Hydrogenation of Imines and Alkenes Using Cyclohexa-1,4-dienes
as Dihydrogen Surrogates. Org. Lett. 2016, 18, 2463–2466.
(19) (a) See References [2,5b,6,7,8]. (b) Campos, P. J.; García, B.;
REFERENCES
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(1) Sunley, G. J.; Watson, D. J. High productivity methanol
carbonylation catalysis using iridium: The Cativa™ process for the
manufacture of acetic acid. Catal. Today 2000, 58, 293–307.
(2) Ma, S.; Lu, X.; Li, Z.
A novel regio- and stereospecific
hydrohalogenation reaction of 2-propynoic acid and its derivatives. J.
Org. Chem. 1992, 57, 709–713.
(3) Irifune, S.; Kibayashi, T.; Ishii, Y.; Ogawa, M. A Facile Synthesis of
Alkyl Iodides and Deuterated Alkyl Iodides by Hydroiodination and
Deuterioiodination of Olefins. Synthesis 1988, 366–369.
(4) Yu, W.; Jin, Z. A Highly Stereoselective Synthesis of α-Halo Vinyl
Ethers and Their Applications in Organic Synthesis. J. Am. Chem.
Soc. 2000, 122, 9840–9841.
(5) (a) Kropp, P. J.; Daus, K. A.; Tubergen, M. W.; Kepler, K. D.;
Wilson, V. P.; Craig, S. L.; Baillargeon, M. M.; Breton, G. W.
Surface-mediated reactions. 3. Hydrohalogenation of alkenes. J. Am.
Chem. Soc. 1993, 115, 3071–3079. (b) Kropp, P. J.; Crawford, S. D.
Surface-Mediated Reactions. 4. Hydrohalogenation of Alkynes. J.
Org. Chem. 1994, 59, 3102–3112.
(6) (a) Stewart, L. J.; Gray, D.; Pagni, R. M.; Kabalka, G. W. A
convenient method for the addition of HI to unsaturated
hydrocarbons using I2 on Al2O3. Tetrahedron Lett. 1987, 28, 4497–
4498. (b) Pagni, R. M.; Kabalka, G. W.; Boothe, R.; Gaetano, K.;
Stewart, L. J.; Conaway, R.; Dial, C.; Gray, D.; Larson, S.;
Luidhardt, T. Reactions of unsaturated compounds with iodine and
bromine on γ alumina. J. Org. Chem. 1988, 53, 4477–4482.
(7) (a) Kawaguchi, S.-i.; Ogawa, A. Highly Selective Hydroiodation of
Alkynes Using an Iodine−Hydrophosphine Binary System. Org. Lett.
2010, 12, 1893–1895. (b) Kawaguchi, S.-I.; Gonda, Y.; Masuno, H.;
Thị Vũ, M.; Yamaguchi, K.; Shinohara, H.; Sonoda, M.; Ogawa, A.
A convenient hydroiodination of alkynes using I2/PPh3/H2O and its
application to the one-pot synthesis of trisubstituted alkenes via
iodoalkenes using Pd-catalyzed cross-coupling reactions.
Tetrahedron Lett. 2014, 55, 6779–6783.
(8) Reddy, C. K.; Periasamy, M. A new, simple procedure for the
generation and addition of HI to alkenes and alkynes using
Bl3:N,N-diethylaniline complex and acetic acid. Tetrahedron Lett.
1990, 31, 1919–1920.
(9) Chervin, S. M.; Abada, P.; Koreeda, M. Convenient, in Situ
Generation of Anhydrous Hydrogen Iodide for the Preparation of
α-Glycosyl Iodides and Vicinal Iodohydrins and for the Catalysis of
Ferrier Glycosylation. Org. Lett. 2000, 2, 369–372.
Rodríguez, M. A.
A simple and versatile method for the
hydroiodination of alkenes and alkynes using I2 and Et3SiH in the
presence of copper(II). Tetrahedron Lett. 2002, 43, 6111–6112. (c)
Bartoli, G.; Cipolletti, R.; Di Antonio, G.; Giovannini, R.; Lanari, S.;
Marcolini, M.; Marcantoni, E.
A convergent approach to
(R)-Tiagabine by a regio- and stereocontrolled hydroiodination of
alkynes. Org. Biomol. Chem. 2010, 8, 3509–3517. (d) Kawaguchi,
S.-i.; Masuno, H.; Sonoda, M.; Nomoto, A.; Ogawa, A. Highly
regioselective hydroiodination of terminal alkynes and silylalkynes
with iodine and phosphorus reagents leading to internal iodoalkenes.
Tetrahedron 2012, 68, 9818–9825.
(20) (a) See References 3, 5a, 6, 8, and 18b. (b) Landini, D.; Rolla, F.
Addition of hydrohalogenic acids to alkenes in aqueous-organic,
two-phase systems in the presence of catalytic amounts of onium
salts. J. Org. Chem. 1980, 45, 3527–3529. (c) Shimizu, M.; Toyoda,
T.; Baba, T. An Intriguing Hydroiodination of Alkenes and Alkynes
with Titanium Tetraiodide. Synlett 2005, 2516–2518. (d) Ma, X.;
Herzon, S. B. Non-classical selectivities in the reduction of alkenes
by cobalt-mediated hydrogen atom transfer. Chem. Sci. 2015, 6,
6250–6255.
(21) (a) Ma, S.; Shi, Z.; Li, L. Efficient Synthesis of
4-Halo-4-penten-2-ones and 3-Halo-3-butenoic Acids/Esters via
Hydrohalogenation
Reaction
of
3,4-Pentadien-2-one
and
2,3-Butadienoic Acid/Methyl Ester. J. Org. Chem. 1998, 63, 4522–
4523. (b) Ma, S.; Wei, Q. Hydrohalogenation Reactions of
1,2-Allenic Sulfones. A Novel Synthesis of 2-Haloallylic Sulfones.
J. Org. Chem. 1999, 64, 1026–1028. (c) Ma, S.; Li, L.; Xie, H. Hy-
drohalogenation Reaction of 1,2-Allenyl Ketones Revisited. Effi-
cient and Highly Stereoselective Synthesis of β,γ-Unsaturated
β-Haloketones. J. Org. Chem. 1999, 64, 5325–5328. (d) Ma, S.;
Wang, G. Highly selective hydrohalogenation reaction of substituted
23-allenoates. Chin. J. Chem. 1999, 17, 545–549. (e) Ma, S.; Wei, Q.
Hydrohalogenation Reaction of 1,2-Allenic Sulfoxides with AlX3
and H2O: Efficient Synthesis of 2-Haloallyl Sulfoxides. Eur. J. Org.
Chem. 2000, 1939–1943. (f) Ma, S.; Xie, H.; Wang, G.; Zhang, J.;
Shi, Z. Hydrohalogenation Reaction of Substituted 1,2-Allenic
Carboxylic Acids, Esters, Amides, Nitriles, and Diphenyl Phosphine
Oxides. Synthesis 2001, 713–730. (g) Reddy, A. S.; Laali, K. K.
Reaction of allene esters with Selectfluor/TMSX (X = I, Br, Cl) and
(10) Zeng, C.; Shen, G.; Yang, F.; Chen, J.; Zhang, X.; Gu, C.; Zhou, Y.;
Fan, B. Rhodium-Catalyzed Generation of Anhydrous Hydrogen
Iodide: An Effective Method for the Preparation of Iodoalkanes. Org.
Lett. 2018, 20, 6859–6862.
(11) (a) Petrone, D. A.; Franzoni, I.; Ye, J.; Rodríguez, J. F.;
Poblador-Bahamonde, A. I.; Lautens, M. Palladium-Catalyzed
Hydrohalogenation of 1,6-Enynes: Hydrogen Halide Salts and Alkyl
Halides as Convenient HX Surrogates. J. Am. Chem. Soc. 2017, 139,
3546–3557.
For
a
related
hydroiodination
with
BnEt3NI/camphorsulfonic acid catalyzed by ruthenium, see: (b)
Dérien, S.; Klein, H.; Bruneau, C. Selective Ruthenium‐Catalyzed
Hydrochlorination of Alkynes: One-Step Synthesis of Vinylchlorides.
Angew. Chem., Int. Ed. 2015, 54, 12112–12115.
Selectfluor/NH4SCN:
Competing
oxidative/electrophilic
(12) For recent reviews of transition-metal-catalyzed transfer processes,
see: (a) Bhawal, B. N.; Morandi, B. Shuttle Catalysis—New
Strategies in Organic Synthesis. Chem. Eur. J. 2017, 23, 12004–
12013. (b) Bhawal, B. N.; Morandi, B. Catalytic Transfer
Functionalization through Shuttle Catalysis. ACS Catal. 2016, 6,
7528–7535.
(13) (a) Fang, X.; Yu, P.; Morandi, B. Catalytic reversible alkene-nitrile
interconversion through controllable transfer hydrocyanation.
Science 2016, 351, 832–836. (b) Fang, X.; Cacherat, B.; Morandi, B.
CO- and HCl-free synthesis of acid chlorides from unsaturated
hydrocarbons via shuttle catalysis. Nat. Chem. 2017, 9, 1105‒1109.
dihalogenation and nucleophilic/conjugate addition. Beilstein J. Org.
Chem. 2015, 11, 1641–1648.
(22) The syntheses of surrogates 1 and 2 are described in the Supporting
Information.
(23) Brookhart,
M.;
Grant,
B.;
Volpe,
Jr.,
A.
F.
[(3,5-(CF3)2C6H3)4B]-[H(OEt2)2]+:
a
convenient reagent for
generation and stabilization of cationic, highly electrophilic
organometallic complexes. Organometallics 1992, 11, 3920‒3922.
(24) Vitullo, V. P.; Cashen, M. J. Mechanistic aspects of the
dienol-benzene rearrangement. Tetrahedron Lett. 1973, 4823‒4826.
ACS Paragon Plus Environment