S. B. Yewale et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6616–6620
6619
Table 3
Evaluation of ulcer index
USA). All India Council for Technical Education, (AICTE) New Delhi
for financial assistance towards purchase of docking software,
Schrodinger Maestro-9.0 with GLIDE (Schrodinger Inc., USA) ver-
sion 4.5 and Ethicon (Johnson and Johnson Ltd.), Aurangabad,
(MS), India for providing Wistar Albino Rats to encompass pharma-
cological screening.
Compd
Dose(mg/kg)
Time(days)
Ulcer Index
Control
Diclofenac
Celecoxib
4a
4b
4c
5g
5h
5i
–
4
4
4
4
4
4
4
4
4
0
75
75
75
75
75
75
75
75
39.17 1.08⁄
9.58 0.71⁄
4.66 1.14⁄
7.50 1.26
7.83 1.17⁄
3.20 1.27⁄
16.72 0.48⁄
9.50 1.84⁄
References and notes
1. Thomas, L. L.; David, A. W.; Victoria, F. R.; Zito, S. W. Foye’s principles of
medicinal chemistry; Lippincott Williams and Wilkins: Philadelphia, 2008.
2. Randy, L. B.; Richard, R. H.; Andrew, O. S. In Burger’s medicinal chemistry and
drug discovery; Donald, J. A., Ed.; A John Wiley and Sons, Inc.: Hoboken, New
Jersy, 2003; vol. 4, pp 235–244.
Each value represent the mean SEM, n = 6 analyzed by ANOVA followed by
Dunnett’s test ⁄p <0.05.
3. Rapposelli, S.; Lapucci, A.; Minutolo, F.; Orlandini, E.; Ortore, G.; Pinz, M.;
Balsamo, A. Eur. J. Med. Chem. 2003, 38, 157.
4. Singh, S. K.; Saibaba, V.; Rao, K. S.; Reddy, P. G.; Daga, P. R.; Rajjak, S. A.; Misra,
P.; Rao, Y. K. Eur. J. Med. Chem. 2005, 40, 977.
5. Bekhit, A. A.; Ashour, H. M. A.; Abdel Ghany, Y. S.; Baraka, A. Eur. J. Med. Chem.
2008, 43, 456.
6. Lin, R.; Chiu, G.; Yu, Y.; Connolly, P. J.; Li, S.; Lu, Y.; Adams, M.; Fuentes-
Pesquera, A. R.; Emanuel, S. L.; Greenberger, L. M. Bioorg. Med. Chem. Lett. 2007,
17, 4557.
7. Cottineau, B.; Toto, P.; Marot, C.; Pipaud, A.; Chenault, J. Bioorg. Med. Chem. Lett.
2002, 12, 2105.
8. Menozzi, G.; Fossa, P.; Cichero, E.; Spallarossa, A.; Ranise, A.; Mosti, L. Eur. J.
Med. Chem. 2008, 43, 2627.
9. Quintela, J. M.; Peinadora, C. Bioorg. Med. Chem. 2003, 11, 863.
10. Rathod, I. S.; Baheti, K. G.; Shirsath, V. S. Ind. J. Pharm. Sci. 2005, 67, 593.
11. Wang, H. Q.; Zhou, W.; Wang, Y.; Lin, C. J. Agric. Food Chem. 2008, 56, 7321.
12. Holla, B. S.; Manjathuru, M.; Karthikeyan, M. S.; Akberali, P. M.; Shetty, S.
Bioorg. Med. Chem. 2006, 14, 2040.
13. Manetti, F.; Brullo, C.; Magnani, M.; Mosci, F.; Chelli, B.; Crespan, E.; Schenone,
S.; Naldini, A.; Bruno, O.; Trincavelli, M. L.; Maga, G.; Carraro, F.; Martini, C.;
Bondavalli, F.; Botta, M. J. Med. Chem. 2008, 51, 1252.
modes of the synthesized test compounds 4a–c and 5a–l depicts
pie-pie stacking between benzene rings and amino acids Proline
(Pro A:538) of 6 COX, along with same type interaction for pyrazole
nucleus of all synthesized derivatives with amino acid Phenyl Ala-
nine (Phe B:142) as a common interaction. When docking interac-
tions pertaining to discrete chemical substitutions attached were
compared we observed that; the compounds substituted with p-
nitro phenyl moiety on first nitrogen of pyrazole nucleus have ionic
interactions with either Asparagine B:537 as in 5d, 5e, 5f or Valine
B:228 and with both as in case of compound 4a, 4c. Some of the
typical binding modes noticed for molecules with high glide score
were; for 4c; amino function and oxygen belonging to sulphona-
mide group formed hydrogen bonding with Valine (Val A:228)
and Histidine (His A:226).
14. Fevig, J. M.; Cacciola, J.; Buriak, J., Jr.; Rossi, K. A.; Knabb, R. M.; Luettgen, J. M.;
Wong, P. C.; Bai, S. A.; Wexler Patrick, R. R.; Lam, Y. S. Bioorg. Med. Chem. Lett.
2006, 16, 3755.
Selected compounds 4a–c and 5g–i when tested for the possible
ulcerogenic potential, the findings were that the compounds with
phenyl substitution at first position and p-toludinyl substitution
at third position showed very few sign of redness. Among the
tested compounds, 5g found to be least ulcerogenic with ulcer in-
dex of 3.20. The most active compound of the series 5i showed the
ulcer index of 9.5 whereas diclofenac sodium exhibited ulcer index
of 39.17 and celecoxib exhibited of ulcer index with value 9.58.
Ulcerogenic potential of substituents of compounds can be sum-
marized as COOH > NO2 > SO2NH2 > Phenyl > tolyl Table 3.
In summary, a series of novel 3-substituted-1-aryl-5-phenyl-6-
anilino pyrazolo[3,4-d]pyrimidin-4-ones has been prepared and
assigned structures by analytical and spectral data. The results of
the anti-inflammatory activity of the series showed that the com-
pounds exhibited moderate to good anti-inflammatory activity.
The compound 5i was found to be superior to reference drug dic-
lofenac sodium and comparable to celecoxib where as compound
4c, 5c, 5f and 5l showed comparable activity diclofenac sodium.
The ulcer index of the compound 5i was found to be less than cele-
coxib and diclofenac sodium. The COX-2 docking score of com-
pound 5i was found to be better than celecoxib. Hence this series
could generate precursors which can be further optimized and
developed for a novel lead compounds for emerging drug design
and drug discovery of anti-inflammatory compounds.
15. Rashad, A. E.; Hegab, M. I.; Megeid-Abdel, R. E.; Micky, J. A.; Megeid, F. Bioorg.
Med. Chem. 2008, 16, 7102.
16. Chern, J.; Shia, K.; Hsu, T.; Tai, C.; Lee, C. Bioorg. Med. Chem. Lett. 2004, 14, 2519.
17. Gillespie, R. J.; Cliffe, I. A.; Dawson, C. E.; Dourish, C. T.; Gaur, S.; Jordan, A. M.;
Knight, A. R.; Lerpiniere, J.; Misra, A.; Pratt, R. M.; Roffey, J.; Stratton, G. C.;
Upton, R.; Weiss, S. M.; Williamson, D. S. Bioorg. Med. Chem. Lett. 2008, 18,
2924.
18. Unuma, K.; Harada, K.; Nakajima, M.; Ito, T.; Okutsu, K.; Yoshida, K. Legal Med.
2010, 12, 242.
19. Jensen, K. A.; Henrikesen, L. Acta Chem. Scand. 1968, 22, 1107.
20. Furniss, B. S.; Tatchell, A. R.; Smith, P. W. G. Vogel’s textbook of practical organic
chemistry; Pearson’s Education: New Delhi, 2005 [Chapter 7].
21. Winter, C. A.; Risley, E. A.; Nuss, G. W. Prog. Soc. Exp. Biol. Med. 1962, 544.
22. Szelenyl, I.; Thiemer, K. Arch. Toxicol. 1978, 41, 99.
23. Talley, J. J. Prog. Med. Chem. 1999, 36, 201.
24. Kurumbail, R. G.; Stevans, A. M.; Gierse, J. K.; McDonald, J. J.; Stegeman, R. A.;
Pak, J. Y.; Glidehouse, D.; Miyashiro, J. M.; Penning, T. D.; Sibert, K.; Isakson, P.
C.; Stallings, W. C. Nature 1996, 384, 644.
25. Friesner, R. A.; Banks, R. B.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D.
T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.;
Shenkin, P. S. J. Med. Chem. 2004, 47, 1739.
26. Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Polard, W.
T.; Banks, J. L. J. Med. Chem. 2004, 47, 1750
Notes-Pharmacological Screening-Healthy Wistar Albino rats of either sex
weighing 150–180 g were used for study. Diclofenac sodium and celecoxib at
25 mg/kg was administered orally as a standard drug for comparison of anti-
inflammatory activity and ulcerogenic potential. The test compounds were
administered orally at a dose of 25 mg/kg suspended in 1% Tween 80 with
distilled water. The paw volumes were measured using the mercury
displacement technique with the help of Ugo Basile Digital Plethysmometer
at 0, 1, 2 and 3 h after carrageenan injection(0.1 ml, 1%w/v solution).
Docking-2D structures were converted to 3D stereoisomers were generated,
charged structures were neutralized and most probable ionization state at user
defined pH was determined. Conformations were generated using rapid torsion
angle search approach followed by minimization in OPLS force field 2005.
Evaluation is done with glide score (docking score) and single best pose is
Acknowledgments
Authors are grateful to Padmashree Mrs. Fatma Rafiq Zakaria,
Chairman, Maulana Azad Educational Trust, Aurangabad for pro-
viding the facilities, Dr. Jagdish Baheti and Prof. Vishal Gulecha of
Department of Pharmacology, SSDJ College of Pharmacy, Chand-
wad, (MS), India for their help in evaluation of anti-inflammatory
activity, Dr. S.J. Suarana, Principal, R.C. Patel Institute of Pharma-
ceutical Education and Research, Shirpur, (MS), India for providing
advanced molecular docking programme Glide (Schrodinger Inc.,
generated as output for particular ligand.
G Score is expressed as
Gscore = a ꢁ vdW + b⁄coul + Lipo + H bond + Metal + Bury P + Rot B + Site
Where, vdW is Van der Waal’s energy, Coul is coulomb energy, Lipo is
lipophilic contact term, H-Bond is hydrogen-bonding term, Metal is metal
binding term, BuryP is penalty for buried polar groups, RotB is penalty for
freezing rotatable bonds, Site is polar interactions at the active site and the
coefficients of vdW and Coul are a = 0.0065, b = 0.130. Chemscore and atom-
atom pair function assigns score to lipophilic ligand atoms based on
summation over a pair function; each term of which depends upon inter