M. Muthu Tamizh et al. / Inorganica Chimica Acta 394 (2013) 391–400
393
163.61 (C1) ppm. 31P{1H} NMR (202.46 MHz, CDCl3): d = 28.14 (s,
1P) ppm.
(d, J = 2 Hz, C8), 152.52 (C7), 163.95 (C1) ppm. 1P{1H} NMR
(202.46 MHz, CDCl3): d = 28.06 (s, 1H) ppm.
2.4.3. [Pd(LO)(PPh3)] (3)
2.4.6. [Pd(LN)(PPh3)] (6)
[Pd(LO)(PPh3)] (3) is prepared from [Pd(PPh3)4] (0.25 g;
0.216 mmol) and H2LO (0.0561 g; 0. 0.216 mmol). Yield: 65 mg
(48%). M.p. 242 °C (dec.). Anal. Calc. for C31H24NPd2OPS: C, 61.4;
H, 4.2; N, 2.2; S, 5.1. Found: C, 61.4; H, 4.2; N, 2.3; S, 5.2%. UV–
[Pd(LN)(PPh3)] (6) is prepared from [Pd(PPh3)4] (0.5 g;
0.433 mmol) and H2LN (0.121 g; 0.433 mmol). Yield: 173 mg
(62%). M.p. 247 °C. Anal. Calc. for C35H26NPdOPS: C, 65.1; H, 4.1;
N, 2.2; S, 5.0. Found: C, 65.0; H, 4.1; N, 2.2; S, 5.0%. UV–Vis (CH2Cl2)
(e
/dm3 molꢀ1 cmꢀ1): 229 (44380), 247
kmax/nm
(36630), 324 (14370), 340 (10455), 451 (12065), 472 (9900). FT-
IR (KBr disk), cmꢀ1
(C@N) 1614, (C–O) 1339, (C–S) 742,
(Pd–O) 532, (Pd–N) 457, bands due to PPh3 1435, 1095, 692.
(e
/dm3 molꢀ1 cmꢀ1): 232 (54300), 248 (56085), 271
Vis (CH2Cl2) kmax/nm
(47085), 302 (18110), 321 (11950), 338 (6420), 465 (8350). FT-IR
(KBr disk), cmꢀ1
(C@N) 1591, (C–O) 1315, (C–S) 746, (Pd–O)
530,
(Pd–N) 457, bands due to PPh3 1433, 1098, 693. 1H NMR
:
m
m
m
m
:
m
m
m
m
m
m
(500 MHz, CDCl3): d = 3.79 (s, 3H, H40), 6.63 (d, J = 9.5 Hz, 1H,
H2), 6.87 (d, J = 3.2 Hz, 1H, H5), 6.99–7.08 (m, 3H, H3, H10 and
H11), 7.40–7.47 (m, 7H, Hm and H12), 7.47–7.53 (m, 3H, Hp),
7.71–7.80 (m, 7H, Ho and H9), 8.92 (d, J = 15.5 Hz, 1H, H7) ppm.
13C{1H} NMR (125.76 MHz, CDCl3): d = 56.07 (C40), 114.17 (C5),
115.23 (C9), 117.73 (C6), 122.23 (C10), 123.12 (C2), 126.49 (C3),
128.25 (d, J = 11 Hz, Cm), 129.14 (d, J = 51 Hz, Cq), 129.35 (C12),
130.97 (d, J = 2 Hz, Cp), 134.91 (d, J = 11 Hz, Co), 143.90 (d,
J = 8 Hz, C13), 148.48 (d, J = 2 Hz, C8), 149.14 (C4), 152.77 (C7),
161.24 (C1) ppm. 31P{1H} NMR (202.46 MHz, CDCl3): d = 29.50 (s,
1P) ppm.
1H NMR (500 MHz, CDCl3): d = 6.80 (d, J = 9.1 Hz, 1H, H2), 7.06–
7.13 (m, 2H, H10 and H11), 7. 30 (t, J = 6.9 Hz, 1H, H30), 7.42–
7.60 (m, 11H, Hm, Hp, H60 and H12), 7.62–7.73 (m, 2H, H3, H40),
7.75–7.89 (m, 7H, Ho and H9), 8.23 (d, J = 8.5 Hz, 1H, H50), 9.95
(d, J = 15.7 Hz, 1H, H7) ppm. 13C{1H} NMR (125.76 MHz, CDCl3):
d = 109.74 (C6), 115.38 (C9), 119.56 (C50), 122.42 (C10), 122.48
(C30), 125.15 (C2), 126.46 (C11), 127.14 (C40), 127.67 (C60),
128.34 (d, J = 11 Hz, Cm), 129.12 (C12), 129.17 (d, J = 51 Hz, Cq),
129.21 (C40), 131.01 (d, J = 2.5 Hz, Cp), 134.86 (d, J = 11 Hz, Co),
135.35 (C5), 135.77 (C3), 143.06 (d, J = 7.5 Hz, C13), 147.26 (C7),
149.86 (d, J = 2 Hz, C8), 165.87 (C1) ppm. 1P{1H} NMR
(202.46 MHz, CDCl3): d = 28.06 (s, 1P) ppm.
2.4.4. [Pd(LC)(PPh3)] (4)
[Pd(LC)(PPh3)] (4) is prepared from [Pd(PPh3)4] (0.5 g;
0.433 mmol) and H2LC (0.114 g; 0.433 mmol). Yield: 145 mg
(53%). M.p. 246 °C (dec.). Anal. Calc. for C31H23ClNPdOPS: C, 59.1;
H, 3.7; N, 2.2; S, 5.1. Found: C, 59.0; H, 3.7; N, 2.3; S, 5.1%. UV–
2.5. General procedure for the Suzuki–Miyaura cross coupling reaction
To the catalyst (1.0 mol%) dissolved in 1 ml DMAc, aryl bromide
(1.0 mmol), phenyl boronic acid (1.5 mmol) in 1 ml ethanol, K2CO3
(2.0 mmol) in 1 ml water and DMAc (5 ml) were all added. The
mixture was heated at 100 °C for 12 h. Then, the mixture was
cooled, water was added and the product was extracted with
ethylacetate. The organic layer was washed with brine, dried over
Na2SO4, filtered, passed through celite, and analyzed by GC. Yields
were based on corresponding aryl bromides.
Vis (CH2Cl2) kmax/nm
(56675), 299 (21775), 317 (16595), 331 (11580), 442 (11875).
FT-IR (KBr disk), cmꢀ1
(C@N) 1602, (C–O) 1320, (C–S) 741,
(Pd–O) 530, (Pd–N) 468, bands due to PPh3 1434, 1096, 693.
(e
/dm3 molꢀ1 cmꢀ1): 230 (50590), 248
:
m
m
m
m
m
1H NMR (500 MHz, CDCl3, 25 °C): d = 6.60 (d, J = 9.1 Hz, 1H, H2),
6.99–7.09 (m, 2H, H10 and H11), 7.19 (dd, J = 9.1, 2.8 Hz, 1H, H3),
7.40–7.47 (m, 8H, Hm, H5 and H12), 7.48–7.54 (m, 3H, Hp), 7.69
(d, J = 8.2 Hz, 1H, H9), 7.71–7.79 (m, 6H, Ho), 8.85 (d, J = 15.1 Hz,
1H, H7) ppm. 13C{1H} NMR (125.76 MHz, CDCl3): d = 115.41 (C9),
118.79 (C6), 119.96 (C4), 122.43 (C10), 123.64 (C2), 127.44 (C11),
128.32 (d, J = 12 Hz, Cm), 128.90 (d, J = 52 Hz, Cq), 129.30 (C12),
131.09 (d, J = 2 Hz, Cp), 133.49 (C5), 134.86 (d, J = 12 Hz, Co),
134.98 (C3), 144.38 (d, J = 7.5 Hz, C13), 148.04 (d, J = 2.5 Hz, C8),
152.59 (C7), 163.67 (C1) ppm. 13C-DEPT 135 NMR (125.76 MHz,
CDCl3): d = 115.41 (C9), 122.43 (C10), 123.62 (C2), 127.44 (C11),
128.33 (d, J = 12 Hz, Cm), 129.30 (C12), 131.09 (d, J = 2 Hz, Cp),
133.49 (C5), 134.85 (d, J = 12 Hz, Co), 152.59 (C7) ppm. 1P{1H}
NMR (202.46 MHz, CDCl3, 25 °C): d = 29.48 (s, 1P) ppm.
3. Results and discussion
3.1. Synthesis
The syntheses of palladium(II) complexes are summarized in
Scheme 1. The desired complexes of the type [Pd(L)(PPh3)] (1-6)
(L = dianion of tridentate ONS donor Schiff base ligand) have been
prepared from the reactions between [Pd(PPh3)4] and the
respective ligand (H2LS, H2LM, H2LO, H2LC, H2LB or H2LN) in etha-
nol–dichloromethane mixture at 25–27 °C. The palladium(II) com-
plexes were characterized by elemental analysis and spectroscopic
methods (FT-IR, UV–Vis and 1H, 13C{1H}, and 31P{1H} NMR). Struc-
tures of representative complexes 1, 2 and 6 were examined by X-
ray crystallography. The data show that a single Schiff base ligand
displaces three triphenylphosphine ligands in the precursor. The
coordination behavior of Schiff base ligands towards palladium(II)
is very similar to that observed in nickel(II), copper(II) and ruthe-
nium(II) complexes [32–35]. All the palladium(II) complexes are
red in color and soluble in common organic solvents.
2.4.5. [Pd(LB)(PPh3)] (5)
[Pd(LB)(PPh3)] (5) is prepared from [Pd(PPh3)4] (0.5 g;
0.433 mmol) and H2LB (0.133 g; 0.433 mmol). Yield: 143 mg
(49%). M.p. 252 °C (dec.). Anal. Calc. for C31H23BrNPdOPS: C, 55.2;
H, 3.4; N, 2.1; S, 4.8. Found: C, 55.1; H, 3.5; N, 2.1; S, 4.6%. UV–
Vis (CH2Cl2) kmax/nm (
(49930), 300 (17900), 316 (12885), 332 (6885), 443 (9555). FT-IR
(KBr disk), cmꢀ1
(C@N) 1597, (C–O) 1317, (C–S) 747, (Pd–O)
531,
(Pd–N) 467, bands due to PPh3 1434, 1098, 694. 1H NMR
e
/dm3 molꢀ1 cmꢀ1): 230 (41880), 248
:
m
m
m
m
m
(500 MHz, CDCl3): d = 6.55 (d, J = 9.1 Hz, 1H, H2), 6.99–7.10 (m,
2H, H10 and H11), 7.30 (dd, J = 9.1, 2.5 Hz, 1H, H3), 7.41–7.48 (m,
7H, Hm and H12), 7.49–7.55 (m, 3H, Hp), 7.58 (d, J = 2.8 Hz, 1H,
H5), 7.70 (d, J = 7.9 Hz, 1H, H9), 7.72–7.78 (m, 6H, Ho), 8.85 (d,
J = 15.1 Hz, 1H, H7) ppm. 13C{1H} NMR (125.76 MHz, CDCl3):
d = 105.43 (C4), 115.41 (C9), 120.88 (C6), 122.44 (C10), 124.04
(C2), 127.47 (C11), 128.33 (d, J = 11 Hz, Cm), 128.83 (d, J = 52 Hz,
Cq), 129.29 (C12), 131.10 (d, J = 2 Hz, Cp), 134.85 (d, J = 12 Hz,
Co), 136.71 (C5), 137.51 (C3), 144.34 (d, J = 7.5 Hz, C13), 147.99
3.2. FT-IR spectra
A strong band around 1615 cmꢀ1 due to
m(C@N) of the ligands
shifts to 1589–1614 cmꢀ1 in the complexes, indicating the azome-
thine coordination to palladium through nitrogen [49]. The coordi-
nation of azomethine nitrogen atom is further supported by the
presence of a new band in the range 457–468 cmꢀ1, assignable to
m
(Pd–N) [50]. All the ligands exhibited a medium intensity band
in the region 1304–1320 cmꢀ1 due to phenolic
m
(C–O). This band