ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Enantioselective Intermolecular
[2 þ 2 þ 2] Cycloadditions of
EneꢀAllenes with Allenoates
Andrew T. Brusoe, Rahul V. Edwankar, and Erik J. Alexanian*
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina 27599, United States
Received November 3, 2012
ABSTRACT
An enantioselective [2 þ 2 þ 2] cycloaddition of eneꢀallenes with allenoates is described, which transforms simple π-components into
stereochemically complex carbocycles in a single step. The rhodium(I)-catalyzed cycloaddition proceeds with good levels of enantioselectivity,
and with high levels of regio-, chemo-, and diastereoselectivity. Our results are consistent with a mechanism involving an enantioselective
intermolecular alleneꢀallene oxidative coupling.
An important goal of chemical synthesis is the rapid
construction of valuable complex molecular architectures
from simple building blocks.1 Transition-metal-catalyzed
cycloadditions have proven to be remarkably useful in
accomplishing these goals.2 These processes provide effi-
cient access to a diverse set of carbocyclic and heterocyclic
compounds from simple π-systems in a single step with
perfect atom economy. The prototype for such a process is
the [2 þ 2 þ 2] cycloaddition,3 which constitutes a powerful
approach to carbocyclic,4 heterocyclic,5 aromatic,6 and
heteroaromatic7 systems.
Alkynes are commonly used as π-components in multi-
component cycloadditions. Despite the efficiency with which
they react in metal-catalyzed cycloadditions, alkynes in-
trinsically limit the stereochemical complexity of the carbo-
cyclic product (Scheme 1). For example, a cycloaddition
employing three alkynes affords a product containing no
stereocenters, whereas a cycloaddition involving three
alkenes could generate a cyclohexane possessing up to
six stereocenters in a single step. We demonstrated the
potential of alkene and allene π-systems to deliver com-
plex trans-fused hydrindanes with high levels of diastereo-
selectivity.8 Herein, we report the development of an en-
antioselective variant of this eneꢀalleneꢀallene [2 þ 2 þ 2]
cycloaddition. This reaction represents a rare enantioselec-
tive intermolecular [2 þ 2 þ 2] cycloaddition capable
(1) Wender, P. A.; Miller, B. L. Nature 2009, 460, 197–201.
(2) (a) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791–
2805. (b) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127–
2198.
(3) (a) Broere, D.; Ruijter, E. Synthesis 2012, 44, 2639–2672.
(b) Galan, B. R.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2830–2834.
(c) Shibata, T.; Tsuchikama, K. Org. Biomol. Chem. 2008, 6, 1317–1323.
(4) (a) Seo, J.; Chui, H. M. P.; Heeg, M. J.; Montgomery, J. J. Am.
Chem. Soc. 1999, 121, 476–477. (b) Tanaka, D.; Sato, Y.; Mori, M.
J. Am. Chem. Soc. 2007, 129, 7730–7731. (c) Ogoshi, S.; Nishimura, A.;
Ohashi, M. Org. Lett. 2010, 12, 3450–3452. (d) Shibata, T.; Otomo, M.;
Endo, K. Synlett 2010, 1235–1238. (e) Trost, B. M.; Imi, K.; Indolese,
A. F. J. Am. Chem. Soc. 1993, 115, 8831–8832. (f) Wender, P. A.; Croatt,
(6) (a) Zhang, K.; Louie, J. J. Org. Chem. 2011, 76, 4686–4691.
(b) Grigg, R.; Scott, R.; Stevenson, P. Tetrahedron Lett. 1982, 23,
2691–2692. (c) Funk, R. L.; Vollhardt, K. P. C. J. Am. Chem. Soc.
1980, 102, 5253–5261.
(7) (a) Tanaka, K.; Suzuki, N.; Nishida, G. Eur. J. Org. Chem. 2006,
3917–3922. (b) Kumar, P.; Prescher, S.; Louie, J. Angew. Chem., Int. Ed.
2011, 50, 10694–10698.
€
M. P.; Kuhn, B. Organometallics 2009, 28, 5841–5844. (g) Lautens, M.;
Edwards, L. G.; Tam, W.; Lough, A. J. J. Am. Chem. Soc. 1995, 117,
10276–10291. (h) Lu, P.; Ma, S. Org. Lett. 2007, 9, 5319–5321. (i) Evans,
P. A.; Sawyer, J. R.; Inglesby, P. A. Angew. Chem., Int. Ed. 2010, 49,
5746–5749.
(8) Brusoe, A. T.; Alexanian, E. J. Angew. Chem., Int. Ed. 2011, 50,
6596–6600.
(9) Shibata, T.; Kawachi, A.; Ogawa, M.; Kuwata, Y.; Tsuchikama,
K.; Endo, K. Tetrahedron 2007, 63, 12853–12859.
(5) (a) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 3262–3263.
(b) Miura, T.; Morimoto, M.; Murakami, M. J. Am. Chem. Soc. 2010,
132, 15836–15838. (c) Friedman, R. K.; Oberg, K. M.; Dalton, D. M.;
Rovis, T. Pure Appl. Chem. 2010, 82, 1353–1364.
r
10.1021/ol303024q
XXXX American Chemical Society