J. Chang et al. / Tetrahedron Letters 53 (2012) 6755–6757
6757
O-
O
O
O
O
I
O
HO-
R
R
R
R
O-
O-
OH
II
OH
O
O
HO-
III
IV
R
O-
O-
O-
O
R
R
H
OR'
R
H
H
V
VI
VII
VIII
HO-
OH
HO-
O-
O
H
R
OH
OH
IX
Scheme 4. Proposed mechanism.
under identical conditions, 2-isopropyltoluene 15 could not be ob-
tained from 2-isopropenyltoluene 14.
References and notes
1. Yanishlieva, N. V.; Marinova, E. M.; Gordon, M. H.; Raneva, V. G. Food Chem.
1999, 64, 59–66.
2. Milos, M.; Mastelic, J.; Jerkovic, I. Food Chem. 2000, 71, 79–83.
Based on the results above, a plausible mechanism was pro-
posed in Scheme 4. Michael addition of I with hydroxide anion fol-
lowed by lactone-ring opening yielded III, which lost a molecule of
carbon dioxide to generate isopropenylphenoxide V. V and VI were
in equilibrium through enol–keto tautomerization. This equilib-
rium is favorable when there is an electron-donating group present
at the 7-position of the initial coumarin derivative, in which case
the resonance structure VII would be stabilized by having a tertiary
carbenium ion. Attack of VI or VII by hydroxide generated IX.
However, attack by hydride ion generated from ethylene glycol
gave VIII irreversibly.
In conclusion, we have disclosed that hydrolysis of coumarin
derivative will give 2-isopropenylphenol or 2-isopropylphenol
depending on the nature of the substrate. The solvent ethylene gly-
col was believed to be the hydrogen donor where 2-isopropylphe-
nol was produced.
ˇ
´
ˇ
´
ˇ ´
´
3. Mastelic´, J.; Jerkovic´, I.; Blazevic, I.; Poljak-Blazi, M.; Borovic, S.; Ivancic-Bace, I.;
ˇ
ˇ
´
ˇ ´
´
´
Smrecki, V.; Zarkovic, N.; Brcic-Kostic, K.; Vikic-Topic, D.; Müller, N. J. Agric.
Food Chem. 2008, 56, 3989–3996.
4. Pearson, D. A.; Frankel, E. N.; Aeschbach, R.; German, J. B. J. Agric. Food Chem.
1997, 45, 578–582.
5. Teissedre, P. L.; Waterhous, A. L. J. Agric. Food Chem 2000, 48, 3801–3805.
6. Helander, I. M.; Alakomi, H. L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.;
Smid, E. J.; Gorris, L. G. M.; Wright, A. von. J. Agric. Food Chem. 1998, 46, 3590–
3595.
7. Galeotti, N.; Mannelli, L. D. C.; Mazzanti, G.; Bartolini, A.; Ghelardini, C.
Neurosci. Lett. 2002, 322, 145–148.
8. Allakhverdiev, A. I.; Kul’kova, N. V.; Murzin, D. Yu. Ind. Eng. Chem. Res. 1995, 34,
1539–1547.
9. Krause, E. L.; Ternes, W. Eur. Food Res. Technol. 1999, 209, 140–144.
10. Velu, S.; Sivasanker, S. Res. Chem. Intermed. 1998, 24, 657–666.
11. Grabowska, H.; Mista, W.; Trawczynski, J.; Wrzyszcz, J.; Zawadzki, M. Appl.
Catal., A 2001, 220, 207–213.
12. Umamaheswari, V.; Palanichamy, M.; Murugesan, V. J. Catal. 2002, 210, 367–
374.
13. Selvaraj, M.; Kawi, S. Microporous Mesoporous Mater. 2008, 109, 458–469.
14. Grabowsaka, K.; Wrzyszcz, J. Res. Chem. Intermed. 2001, 27(3), 281–285.
15. Grabowskaa, H.; Syperb, L.; Zawadzki, M. Appl. Catal., A 2004, 277, 91–97.
16. Nitta, M.; Yamaguchi, K.; Aomura, K. Bull. Chem. Soc. Jpn. 1974, 47, 2897–2898.
17. Yamanka, T. Bull. Chem. Soc. Jpn. 1976, 49, 2669–2673.
18. Gunaratne, H. Q. N.; Lotz, T. J.; Seddon, K. R. New J. Chem. 2010, 34, 1821–1824.
19. Ali, A. A.; Gaikar, V. G. Ind. Eng. Chem. Res. 2011, 50, 6543–6555.
20. Divakar, K. J.; Dhekne, V. V.; Kulkarni, B. D.; Joshi, P. L.; Rao, A. S. Org. Prep.
Proced. Int. 2000, 32, 92–94.
Acknowledgments
We are grateful to the National Natural Science Foundation of
China (Outstanding Young Scholarship to J.C., #30825043; Young
Scholarship to C.S., #20902085) for the financial support.
Supplementary data
21. Han, Z.; Niu, T.; Chang, J.; Lei, X.; Zhao, M.; Wang, Q.; Cheng, W.; Wang, J.; Feng,
Y.; Chai, J. Nature 2010, 464, 1205–1210.
22. a) De, S. K.; Gibbs, R. A. Synthesis 2005, 1231–1233; b) Khandekar, A. C.;
Khandilkar, B. M. Synlett 2002, 152–154.
Supplementary data associated with this article can be found, in