Scheme 1. Synthesis of Copper(II) Complex (þ)-2 and
Tetrahydrosalen Ligand (þ)-5 From (þ)-1
Scheme 2. Asymmetric Henry Reaction Catalyzed by Copper-
(II)-Salen Complex (þ)-2
reaction leading to racemic 4 overwhelmed asymmetric
induction from (þ)-5 (Table 1, entry 1). However, when
the toluene complex of copper(I) triflate6 was used at
1 mol % with ligand (þ)-5 at 10 mol % in dry methanol
(entry 5), a marked increase in the enantiomeric excess of
(R)-4 was observed. The optimum reaction temperature
was found to be 40 °C. When the same conditions were
applied to the Henry reaction of p-chlorobenzaldehyde
with nitromethane an improved yield and enantiomeric
excess of product 6 was observed (Table 1, entry 6); 2,6-
dichlorobenzaldehyde as a substrate (entry 7) raised these
figures further.
Guided by favorable results (entries 5ꢀ7) in Table 1, we
next examined a broad portfolio of aromatic aldehydes
(Table 2, entries 1ꢀ13) in their reaction with nitromethane
catalyzed by the copper(I) complex of (þ)-5. In every case,
nitro alcohol 7 was obtained in >90% enantiomeric excess
(3) with nitromethane under conditions that were intended
to optimize chemical yield and enantioselectivity (Scheme 2).
Initial results were not encouraging, however. Although
20 mol % of (R,R) complex 2 in a methanol/dichloro-
methane solvent pair at elevated temperature was found
to give an acceptable yield of (R)-1-(4-nitrophenyl)-2-
nitroethanol (4), the level of asymmetric induction was poor.
By contrast, reduction of (þ)-1 to diamine (þ)-5, with
sodium borohydride (Scheme 1), followed by complexation
with copper(II) triflate led to a more promising outcome in
the Henry reaction of aryl aldehydes with nitromethane.
First results with p-nitrobenzaldehyde (3) and nitro-
methane using ligand (þ)-5 at 20 mol % and copper(II)
triflate at 5 mol % as the metal source indicated that while
the chemical yield of 4 was acceptable, the background
Table 1. Asymmetric Henry Reaction of Aromatic Aldehydes
with Nitromethane: Effect of Varying Metal Ion Source,
Cu/(þ)-5 Ratio, Catalyst Loading, and Reaction Temperaturea
(4) (a) Sasai, H.; S-uzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am.
Chem. Soc. 1992, 114, 4418. (b) Sasai, H.; Tokunga, T.; Watanabe, S.;
Suzuki, T.; Itoh, N.; Shibasaki, M. J. Org. Chem. 1995, 60, 7388.
(c) Arai, T.; Yamada, Y. M. A.; Yamamoto, N.; Sasai, H.; Shibasaki,
M. Chem.;Eur. J. 1996, 2, 1368. (d) Davis, A. V.; Driffield, M.; Smith,
D. K. Org. Lett. 2001, 3, 3075. (e) Trost, B. M.; Yeh, V. S. C.; Ito, H.;
Bremeyer, N. Org. Lett. 2002, 4, 2621. (f) Trost, B. M.; Yeh, V. S. C.
Angew. Chem., Int. Ed. 2002, 41, 861. (g) Risgard, T.; Gothelf, K. V.;
Jorgensen, K. A. Org. Biomol. Chem. 2003, 1, 153. (h) Evans, D. A.;
Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am.
Chem. Soc. 2003, 125, 12692. (i) Ooi, T.; Doda, K.; Maruoka, K. J. Am.
Chem. Soc. 2003, 125, 2054. (j) Zhong, Y. W.; Tian, P.; Lin, G. Q.
Tetrahedron: Asymmetry 2004, 15, 771. (k) Borah, J. C.; Gogoi, S.;
Boruwa, J.; Kalita, B.; Barua, N. C. Tetrahedron Lett. 2004, 45, 3689.
(l) Zubia, A.; Cossio, F. P.; Morao, L. A.; Rieumont, M.; Lopez, X.
J. Am. Chem. Soc. 2004, 126, 5243. (m) Palomo, C.; Oiarbide, M.;
Mielgo, A. Angew. Chem., Int. Ed. 2004, 43, 5442. (n) Palomo, C.;
Oiarbide, M.; Laso, A. Angew. Chem., Int. Ed. 2005, 44, 3881. (o) Li, H.;
Wang, B.; Deng, L. J. Am. Chem. Soc. 2006, 128, 732. (p) Arai, T.;
Watanabe, M.; Yanagisawa, A. Org. Lett. 2007, 9, 3595. (q) Gruber-
Khadjawi, M.; Purkharthofer, T.; Skranc, W.; Griengl, H. Adv. Synth.
Catal. 2007, 349, 1445. (r) Handa, S.; Nagawa, S.; Sohtome, Y.;
Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2008, 47, 3230.
(s) Toussaint, A.; Pfaltz, A. Eur. J. Chem. 2008, 4591. (t) Kim, H. Y.; Oh,
K. Org. Lett. 2009, 11, 5682. (u) Breuning, M.; Hein, D.; Steiner, M.;
Gessner, V. H.; Strohmann, C. Chem.;Eur. J. 2009, 15, 12764. (v) Ji,
Y. Q.; Qi, G.; Judeh, Z. M. A. Eur. J. Org. Chem. 2011, 4892. (w) Jin, W.;
Li, X.; Wan, B. J. Org. Chem. 2011, 76, 484. (x) Chougnet, A.; Zhang, G.;
Liu, K.; Hausinger, D.; Kagi, A.; Allmendinger, T.; Woggon, W. D.
Adv. Synth. Catal. 2011, 353, 1797.
product 4 or
6
ligand
loading
(mol %)
metal salt
(mol %)
temp t yield ee
(°C) (h) [%]b [%]c
entry
1
Ar
4-NO2C6H4
20
10
Cu(OTf)2
(5)
20 30 4, 68
7
2
4-NO2C6H4
Cu(OTf)2
(2.5)
20 30 4, 55
28
26
43
79
3d 4-NO2C6H4
10 (CuOTf)2 C6H5CH3 20 24 4, 49
3
(5)
4
5
6
7
4-NO2C6H4
4-NO2C6H4
4-CIC6H4
10 (CuOTf)2 C6H5CH3 40 15 4, 85
3
(2.5)
10 (CuOTf)2 C6H5CH3 40 20 4, 64
3
(1)
10 (CuOTf)2 C6H5CH3 40 16 6a, 76 83
3
(1)
2,6-CI2C6H3 10 (CuOTf)2 C6H5CH3 40 20 6b, 89 94
3
(1)
a Reactions were carried out on 0.2 mmol scale with 0.6 mL of
nitromethane. b Yield of isolated product. c Determined by HPLC using
a Daicel Chiralcel AD or OD column. d No molecular sieves added.
(5) White, J. D.; Shaw, S. Org. Lett. 2011, 13, 2488.
B
Org. Lett., Vol. XX, No. XX, XXXX