D. Goyard et al. / Carbohydrate Research 362 (2012) 79–83
83
J = 9.5 Hz, H-3), 5.31 (pdd, 1H, J = 9.8 Hz, H-4), 4.28 (dd, 1H, J = 12.6,
4.9 Hz, H-6a), 4.21 (dd, 1H, J = 12.6, 2.3 Hz, H-6b), 4.02 (ddd, 1H,
J = 10.0, 4.8, 2.4 Hz, H-5), 2.08, 2.08, 2.06, 1.89 (4s, 12H, acetyl);
13C NMR (CDCl3, 100 MHz) d 170.7, 170.4, 169.4, 168.6 (4C, C@O),
145.6 (C-40), 129.1 (CH-Ar), 129.0 (C-Ar), 128.8 (2CH-Ar), 127.2
(2CH-Ar), 108.6 (C-50), 84.8 (C-1), 75.1 (C-5), 73.4 (C-3), 69.2
(C-2), 67.7 (C-4), 61.7 (C-6), 20.8, 20.7, 20.7, 20.5 (4CH3, acetyl);
HRMS [ESI+] m/z [M+Na]+ calcd for C22H24BrN3NaO9 576.0588;
found 576.0578.
J = 9.4 Hz, H-1), 3.88 (dd, 1H, J = 12.7, 3.7 Hz, H-6a), 3.32 (ddd,
1H, J = 9.7, 3.5, 2.3 Hz, H-5), 3.14 (dd, 1H, J = 12.7, 2.0 Hz, H-6b),
1.97, 1.97, 1.95, 1.92 (4s, 12H, acetyl); 13C NMR (CDCl3, 100 MHz)
d 170.4, 170.3, 170.0, 168.3 (4C, C@O), 148.9 (C-40), 129.8 (CH-Ar),
129.1 (2CH-Ar), 128.2 (C-Ar), 126.8 (2CH-Ar), 120.0 (C-50), 83.8
(C-1), 75.1 (C-5), 73.6 (C-3), 69.2 (C-2), 66.8 (C-4), 60.4 (C-6);
HRMS [ESI+] m/z [M+H]+ calcd for C44H49N6O18 949.3098; found
949.3057.
Acknowledgments
4.6. Reaction of 2,3,4,6-tetra-O-b-D-glucopyranosyl azide 1 and
phenylacetylene using CuCl
Financial supports from CNRS, University Claude-Bernard Lyon
1 and the French Agence Nationale de la Recherche (ANR project
GPdia N° ANR-08-BLAN-0305) are gratefully acknowledged. Dr. F.
Albrieux, C. Duchamp, and N. Henriques are gratefully acknowl-
edged for mass spectrometry analyses. Dr. E. Jeanneau is gratefully
acknowledged for crystallographic studies.
A 500 mL round bottom flask was loaded with 2,3,4,6-tetra-O-b-
-glucopyranosyl azide (1.00 g, 2.68 mmol, 1 equiv), CuCl
D
1
(531 mg, 5.36 mmol, 2 equiv), DMAP (58 mg, 0.80 mmol,
0.3 equiv), and CH3CN (200 mL). A solution of phenylacetylene
(587 lL, 5.36 mmol, 2 equiv) in CH3CN (20 mL) was added drop-
wise with a syringe pump over 16 h. The mixture was then concen-
trated under reduced pressure, suspended in EtOAc, and filtered
through celite. The filtrate was concentrated under reduced pres-
sure and purified over silica gel chromatography using mixtures
of PE and EtOAc. TLC analysis (CH2Cl2/EtOAc 9:1) of the crude mix-
ture showed the formation of four different products which were
Supplementary data
Supplementary data associated with this article can be found, in
identified as 1-(2,3,4,6-tetra-O-acetyl-b-
phenylethynyl)-4-phenyl-1,2,3-triazole 4 (Rf = 0.49), 1-(2,3,4,6-tet-
ra-O-acetyl-b- -glucopyranosyl)-5-chloro-4-phenyl-1,2,3-triazole
3c (Rf = 0.49), 1-(2,3,4,6-tetra-O-acetyl-b- -glucopyranosyl)-4-
phenyl-1,2,3-triazole
(Rf = 0.27), and 1,10-di-(2,3,4,6-tetra-O-
acetyl-b-
-glucopyranosyl)-4,40-diphenyl-5,50-bis(1,2,3-triazole) 5
(Rf = 0.06). Product 3c could not be separated from compound 4
by silica gel chromatography and could only be characterized by
mass spectroscopy (m/z [M+Na]+ = 532.1). Yield for compound 3c
was determined according to 1H NMR (CDCl3, 300 MHz) of its
mixture with 4.
D-glucopyranosyl)-5-(2-
References
1. Agius, L. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 587–605.
2. Oikonomakos, N. G.; Somsák, L. Curr. Opin. Invest. Drugs 2008, 9, 379–395.
3. Praly, J.-P.; Vidal, S. Mini-Rev. Med. Chem. 2010, 10, 1102–1126.
4. Somsák, L.; Czifrák, K.; Tóth, M.; Bokor, E.; Chrysina, E. D.; Alexacou, K. M.;
Hayes, J. M.; Tiraidis, C.; Lazoura, E.; Leonidas, D. D.; Zographos, S. E.;
Oikonomakos, N. G. Curr. Med. Chem. 2008, 15, 2933–2983.
5. Bokor, É.; Docsa, T.; Gergely, P.; Somsák, L. Bioorg. Med. Chem. 2010, 18, 1171–
1180.
6. Chrysina, E. D.; Bokor, É.; Alexacou, K.-M.; Charavgi, M.-D.; Oikonomakos, G. N.;
Zographos, S. E.; Leonidas, D. D.; Oikonomakos, N. G.; Somsák, L. Tetrahedron:
Asymmetry 2009, 20, 733–740.
7. Huisgen, R.; Szeimies, G.; Möbius, L. Chem. Ber. 1967, 100, 2494–2507.
8. Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952–3015.
9. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
2002, 41, 2596–2599.
D
D
2
D
4.7. 1-(2,3,4,6-Tetra-O-acetyl-b-D-glucopyranosyl)-5-(2-
phenylethynyl)-4-phenyl-1,2,3-triazole 4
10. Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064.
11. Dondoni, A. Chem. Asian J. 2007, 2, 700–708.
12. Bogdan, A. R.; James, K. Org. Lett. 2011, 13, 4060–4063.
13. Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem.,
Int. Ed. 2009, 48, 8018–8021.
14. Juricek, M.; Stout, K.; Kouwer, P. H. J.; Rowan, A. E. Org. Lett. 2011, 13, 3494–
3497.
15. Kuijpers, B. H. M.; Dijkmans, G. C. T.; Groothuys, S.; Quaedflieg, P. J. L. M.;
Blaauw, R. H.; van Delft, F. L.; Rutjes, F. P. J. T. Synlett 2005, 3059–3062.
16. Schulman, J. M.; Friedman, A. A.; Panteleev, J.; Lautens, M. Chem. Commun.
2012, 48, 55–57.
17. Spiteri, C.; Moses, J. E. Angew. Chem., Int. Ed. 2010, 49, 31–33.
18. Diner, P.; Andersson, T.; Kjellen, J.; Elbing, K.; Hohmann, S.; Grotli, M. New J.
Chem. 2009, 33, 1010–1016.
19. Malnuit, V.; Duca, M.; Manout, A.; Bougrin, K.; Benhida, R. Synlett 2009, 2123–
2126.
20. Smith, N. W.; Polenz, B. P.; Johnson, S. B.; Dzyuba, S. V. Tetrahedron Lett. 2010,
51, 550–553.
21. Wu, Y.-M.; Deng, J.; Li, Y.; Chen, Q.-Y. Synthesis 2005, 1314–1318.
22. Gerard, B.; Ryan, J.; Beeler, A. B.; Porco, J. A., Jr. Tetrahedron 2006, 62, 6405–
6411.
White foam (333 mg, 0.43 mmol, 16%); Rf = 0.24 (PE/EtOAc 7:3);
½
a 2D0
ꢂ
ꢁ21 (c 1, CH2Cl2); 1H NMR (CDCl3, 400 MHz) d 8.20 (d, 1H,
J = 7.6 Hz, H-Ar), 7.63–7.66 (m, 2H, H-Ar), 7.46–7.49 (m, 5H, H-Ar),
7.39 (t, 1H, J = 7.3 Hz, H-Ar), 6.12 (pdd, 1H, J = 9.4 Hz, H-2), 5.99
(d, 1H, J = 9.4 Hz, H-1), 5.47 (pdd, 1H, J = 9.5 Hz, H-3), 5.32
(pdd, 1H, J = 9.8 Hz, H-4), 4.30 (dd, 1H, J = 12.6, 4.8 Hz, H-6a), 4.19
(dd, 1H, J = 12.5, 1.7 Hz, H-6b), 4.04 (ddd, 1H, J = 9.9, 4.6, 1.8 Hz,
H-5), 2.07, 2.05, 1.90, 1.89 (4s, 12H, acetyl); 13C NMR (CDCl3,
100 MHz) d 170.7, 170.4, 169.4, 168.7 (4C, C@O), 131.8 (2CH-Ar),
130.2 (C-Ar), 129.8 (C-Ar), 129.1 (CH-Ar), 129.0 (2CH-Ar), 128.8
(2CH-Ar), 126.5 (2CH-Ar), 121.3 (CH-Ar), 103.4 (Csp), 85.1 (C-1),
75.1 (C-5), 74.8 (Csp), 73.4 (C-3), 69.4 (C-2), 67.7 (C-4), 61.7 (C-6),
20.7, 20.7, 20.6, 20.4 (4CH3, acetyl); HRMS [ESI+] m/z [M+Na]+ calcd
for C30H29N3NaO9 598.1796; found 598.1776.
23. Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302–1315.
24. Angell, Y.; Burgess, K. Angew. Chem., Int. Ed. 2007, 46, 3649–3651.
25. Chen, X.; Khairallah, G. N.; O’Hair, R. A. J.; Williams, S. J. Tetrahedron Lett. 2011,
52, 2750–2753.
4.8. 1,10-Di-(2,3,4,6-tetra-O-acetyl-b- -glucopyranosyl)-4,40-
D
diphenyl-5,50-bis(1,2,3-triazole) 5
26. González, J.; Pérez, V. M.; Jiménez, D. O.; Lopez-Valdez, G.; Corona, D.; Cuevas-
Yañez, E. Tetrahedron Lett. 2011, 52, 3514–3517.
27. Kwon, M.; Jang, Y.; Yoon, S.; Yang, D.; Jeon, H. B. Tetrahedron Lett. 2012, 53,
1606–1609.
28. Mati, I. K.; Cockroft, S. L. Chem. Soc. Rev. 2010, 39, 4195–4205.
29. Berthod, M.; Mignani, G.; Woodward, G.; Lemaire, M. Chem. Rev. 2005, 105,
1801–1836.
White powder (712 mg, 0.75 mmol, 56%); Rf = 0.06 (EtOAc/PE
3:7); mp = 150–151 °C (CH2Cl2/PE); ½a D20
ꢂ
ꢁ54 (c 1.02, CH2Cl2); 1H
NMR (CDCl3, 400 MHz) d 7.59–7.61 (m, 2H, H-Ar), 7.27–7.32 (m,
3H, H-Ar), 6.00 (pdd, 1H, J = 9.3 Hz, H-2), 5.16 (pdd, 1H,
J = 9.6 Hz, H-4), 5.09 (pdd, 1H, J = 9.3 Hz, H-3), 5.07 (d, 1H,