1684
K. B. Sippy et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1682–1685
Tønder and Olessen21,22 that employs two receptor interaction
points (a and b) located 2.9 Å along the trajectory of the NH bond
of the basic amine and the lone pair of the pyridine ring, respec-
tively, as well as the centroid (c) of the heterocycle. According to
Table 1
In vitro pharmacological data for the spirocyclic diamines
Compound
Rat
a
4b2
Human
a
M)
4b2
Human
EC50 (l
a
M)
3b4
b
b
Kia (nM)
EC50
(l
this model, the optimum geometry for high affinity at the
a4b2
Nicotine
Epibatidine
0.94
0.047
0.048
0.15
1.2
21
11
48
33
4.7 (100%)
0.12 (154%)
0.020 (115%)
nd
1.6 (122%)
2.5 (48%)
25 (44%)
>100 (6%)
>100 (20%)
>100 (9%)
>100 (4%)
9.4 (100%)
0.027 (132%)
0.19 (169%)
6.4 (108%)
6.1 (90%)
nAChR is achieved when distances a–b and a–c fall in the ranges
7.3–8.0 Å and 6.5–7.4 Å, respectively, with \bac within 30.4–
35.8ꢀ. To a first approximation, structures A, B, and C (see Fig. 1)
represent different rotamers about the exocyclic CAN bond exter-
nal to the pyridine substituted ring. This has the effect of changing
orientation of the NAH bonds relative to the pyridine ring, and
consequently, the ability of the respective compounds to fit the
parameters of the pharmacophore model. Structures A, B, and C
were generated and the geometry optimized using CFF force
field.23 Rotation about the N-pyridine bond was then allowed to
produce the best fit within the parameters of the model.22
Tebanicline
A19
B20
1a
6.9 (23%)
1b
2a
2b
3a
>100 (4%)
>100 (8%)
>100 (15%)
>100 (2%)
>100 (10%)
240
74
3b
a
Values are means of at least three experiments.
Average of six replicates; maximal response normalized to 100
b
l
M nicotine is
given in parenthesis. nd, not determined.
As shown in Table 2, the bridged and fused ring diamine struc-
tures A and B, respectively, both achieve a good fit to the pharma-
cophore model, with each of the three calculated parameters
within the optimal range of the model. This is consistent with the
potent (nanomolar) binding affinity for these series (Table 1). In
contrast, spirocyclic structure C cannot achieve a conformation that
satisfies the criteria of the model. The best-fit conformation for C
c
N
N
H
2.9 Å
2.9 Å
approaches the optimal ranges for a–b and \bac, but the a–c dis-
b
0
a
tance is too short by 1.1 ÅA. Moreover, this conformer involves sub-
stantial twisting of the pyridinyl-N bond away from the minimal
energy conformation, an energy cost that will further disfavor fit
to the pharmacophore model. Thus, the reduced binding affinity
of C relative to A and B is in accord with the pharmacophore model.
In summary, the spirocyclic diamine represents a new core for
construction of nAChR ligands. The lower affinity of the spirocyclic
structures relative to fused- and bridged-bicyclic counterparts is
consistent with recently developed pharmacophore models. On
the other hand, the spirocyclic amines may exhibit enhanced selec-
Figure 3. The definition of a novel nicotinic pharmacophore model22, where a is the
site point corresponding to the protonated nitrogen atom, b is the site point
corresponding to the electronegative atom capable of forming a hydrogen bond, c is
the center of a heteroaromatic ring or a C@O bond. \bac is the angle measured
between the interatomic distance vectors a–b and a–c.
Of these spirocyclic diamines, only the azetidines 1a,b display
any agonist activity. Both exhibit potencies comparable to nicotine
at the a4b2 nAChR that is considered to be crucial to the analgesic
response, but they are only partial agonists (40–50% of the full nic-
tivity for the a4b2 subtype over other nAChRs.
otine response) at this receptor. Interestingly, although 1b has
somewhat higher affinity than 1a for the
a4b2 nAChR, it is about
References and notes
10-fold weaker as an agonist. This might reflect a species difference
(rat receptor for binding, human for functional activity), or may
indicate that the structural requirements for the binding confor-
mation of the receptor (considered to be the desensitized state)
are changed in the activated (channel-opening) conformation. On
the other hand, neither has much activity at the
with 1a producing a maximal response of only 23% efficacy (rela-
tive to nicotine), and 1b a barely detectable response up to the
maximum concentration of 100 lM.
1. Jain, K. K. Curr. Opin. Inv. Drugs 2004, 5, 76.
2. Meyer, M. D. Drug Dev. Res. 2006, 67, 355.
3. Bunnelle, W. H.; Decker, M. W. Exp. Opin. Ther. Pat. 2003, 13, 1003.
4. Bitner, R. S.; Nikkel, A. L.; Curzon, P.; Donnelly-Roberts, D. L.; Puttfarcken, P. S.;
Namovic, M.; Jacobs, I. C.; Meyer, M. D.; Decker, M. W. Brain Res. 2000, 871, 66.
5. Marubio, L. M.; del Mar Arroyo-Jimenez, M.; Cordero-Erausquin, M.; Lena, C.; Le
Novere, N.; de Kerchove d’Exaerde, A.; Huchet, M.; Damaj, M. I.; Changeux, J.-P.
Nature 1999, 398, 8085.
6. Sullivan, J. P.; Bannon, A. W. CNS Drug Rev. 1996, 2, 21.
7. Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J.
W. J. Am. Chem. Soc. 1992, 114, 3475.
8. Bannon, A. W.; Decker, M. W.; Holladay, M. W.; Curzon, P.; Donnelly-Roberts,
D. L.; Puttfarcken, P. S.; Bitner, R. S.; Diaz, A.; Dickenson, A. H.; Porsolt, R. D.;
Williams, M.; Arneric, S. P. Science 1998, 279, 77.
9. Holladay, M. W.; Wasicak, J. T.; Lin, N.-H.; He, Y.; Ryther, K. B.; Bannon, A. W.;
Buckley, M. J.; Kim, D. J. B.; Decker, M. W.; Anderson, D. J.; Campbell, J. E.;
Kuntzweiler, T.; Donnelly-Roberts, D. L.; Piattoni-Kaplan, M.; Briggs, C. A.;
Williams, M.; Arneric, S. P. J. Med. Chem. 1998, 41, 407.
a
3b4ꢀ receptor,
Both 1a and 1b were tested in the mouse hot plate model for
analgesia. While 1a does exhibit an analgesic response at the high-
est dose tested (62
lmol/kg, ip), hypolocomotion and decreased
body temperature were observed at the same dose. The des-chloro
analog 1b showed no behavioral effects at 62
with the lower agonist activity relative to 1a.
lmol/kg, consistent
10. Bunnelle, W. H.; Daanen, J. F.; Ryther, K. B.; Schrimpf, M. R.; Dart, M. J.; Gelain,
A.; Meyer, M. D.; Frost, J. M.; Anderson, D. J.; Buckley, M. J.; Curzon, P.; Cao, Y.-
J.; Puttfarcken, P. S.; Searle, X.; Ji, J.; Putman, C. B.; Surowy, C. S.; Toma, L.;
Barlocco, D. J. Med. Chem. 2007, 50, 3627.
11. Ji, J.; Schrimpf, M. R.; Sippy, K. B.; Bunnelle, W. H.; Li, T.; Anderson, D. J.;
Faltynek, C.; Surowy, C. S.; Dyhring, T.; Ahring, P. K.; Meyer, M. D. J. Med. Chem.
2007, 50, 5493.
Pharmacophore models for the
a4b2 nAChR place importance
on the spacing and orientation between a basic (or quaternized)
amine and a hydrogen bond acceptor (heterocycle or carbonyl
group). For example, Figure 3 depicts the model developed by
12. The chiral amino acids were commercially available, but the stereogenic center
is racemized during the synthesis.
13. Culbertson, T. P.; Sanchez, J. P.; Gambino, L.; Sesnie, J. S. J. Med. Chem. 1990, 32,
2270.
Table 2
Calculated pharmacophore modeling values for bridged, fused and spiro diamines
14. Padwa, A.; Dent, W. Org. Synth. 1989, 67, 133.
Structure
a–b (Å)
a–c (Å)
\bac (°)
15. Anderson, D. J.; Arneric, S. P. Eur. J. Pharmacol. 1994, 253, 261.
16. Kuntzweiler, T. A.; Arneric, S. P.; Donnelly-Roberts, D. L. DrugDev. Res. 1998, 44, 14.
17. Balboni, G.; Marastoni, M.; Merighi, S.; Borea, P. A.; Tomatis, R. Eur. J. Med.
Chem. 2000, 35, 979.
18. Abreo, M. A.; Lin, N.-H.; Garvey, D. S.; Gunn, D. E.; Hettinger, A.-M.; Wasicak,
J. T.; Pavlik, P. A.; Martin, Y. C.; Donnelly-Roberts, D. L.; Anderson, D. J.;
Optimal range22
A (bridged)
B (fused)
7.3–8.0
7.4
7.6
6.5–7.4
6.5
6.5
30.4–35.8
34.97
34.09
C (spiro)
8.1
5.4
28.2