Journal of the American Chemical Society
Communication
(4) (a) Yuen, J. D.; Fan, J.; Seifter, J.; Lim, B.; Hufschmid, R.; Heeger,
A. J.; Wudl, F. J. Am. Chem. Soc. 2011, 133, 20799. (b) Bijleveld, J. C.;
Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de
Leeuw, D. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2009, 131, 16616.
(c) Nielsen, C. B.; Turbiez, M.; McCulloch, I. Adv. Mater. 2012,
DOI: 10.1002/adma.201201795. (d) Shahid, M.; McCarthy-Ward, T.;
Labram, J.; Rossbauer, S.; Domingo, E. B.; Watkins, S. E.; Stingelin, N.;
Anthopoulos, T. D.; Heeney, M. Chem. Sci. 2012, 3, 181.
(RMS) deviation in the AFM height images, which agrees with
the Scherrer analysis. These findings indicate that the
introduction of fluorine atoms affects not only energy levels,
but also interchain interactions of polymers, creating different
polymer packing in films. Since dense molecular packing can
result in a barrier to oxygen and water, thereby stabilizing
electron transport,18 we assume that the strong crystallinity and
ordered packing in PFII2T may also contribute to its improved
ambient stability.
(5) (a) Pietro, R. D.; Fazzi, D.; Kehoe, T. B.; Sirringhaus, H. J. Am.
Chem. Soc. 2012, 134, 14877. (b) Nicolai, H. T.; Kuik, M.; Wetzelaer, G.
In conclusion, we have demonstrated for the first time that the
molecular engineering of the isoindigo core in isoindigo-based
donor-acceptor conjugated polymers can dramatically improve
the FET performance using these polymers as active layer.
Fluorinated isoindigo-based polymer PFII2T shows lowered
bandgaps and HOMO/LUMO levels. Ambipolar FETs based on
PFII2T can be fabricated and tested in ambient by solution-
process, and the electron mobility increases from 10−2 to 0.43
cm2 V−1 s−1 with high hole mobility up to 1.85 cm2 V−1 s−1.
Through fluorination, isoindigo-based polymer PFII2T main-
tains high hole mobilities, good ambient stability, but above all
starts to possess high electron mobilities. GIXD and AFM results
also indicate that the introduction of fluorine in electron-
deficient isoindigo cores leads to different interchain interactions
and stronger crystalline tendency. A combination of the
molecular engineering strategies toward isoindigo core (devel-
oped herein), donor units (developed previously by us)8a and
side chains (developed previously by Bao et al. and us)7 may
further improve the performance of organic electronics based on
these polymers.
A. H.; de Boer, B.; Campbell, C.; Risko, C.; Bred
Nat. Mater. 2012, 11, 882.
(6) (a) Wang, E.; Ma, Z.; Zhang, Z.; Vandewal, K.; Henriksson, P.;
Inganas, O.; Zhang, F.; Andersson, M. R. J. Am. Chem. Soc. 2011, 133,
́
as, J. L.; Blom, P. W. M.
̈
14244. (b) Ma, Z.; Wang, E.; Jarvid, M. E.; Henriksson, P.; Inganas, O.;
̈
Zhang, F.; Andersson, M. R. J. Mater. Chem. 2012, 22, 2306. (c) Wang,
E.; Ma, Z.; Zhang, Z.; Henriksson, P.; Inganas, O.; Zhang, F.; Andersson,
̈
M. R. Chem. Commun. 2011, 47, 4908. (d) Stalder, R.; Mei, J.; Reynolds,
J. R. Macromolecules 2010, 43, 8348. (e) Mei, J.; Graham, K. R.; Stalder,
R.; Reynolds, J. R. Org. Lett. 2010, 12, 660.
(7) (a) Lei, T.; Dou, J.-H.; Pei, J. Adv. Mater. 2012, DOI: 10.1002/
adma.201202689. (b) Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.;
Bao, Z. J. Am. Chem. Soc. 2011, 133, 20130.
(8) (a) Lei, T.; Cao, Y.; Zhou, X.; Peng, Y.; Bian, J.; Pei, J. Chem. Mater.
2012, 24, 1762. (b) Lei, T.; Cao, Y.; Fan, Y.; Liu, C.-J.; Yuan, S.-C.; Pei, J.
J. Am. Chem. Soc. 2011, 133, 6099.
(9) Stalder, R.; Mei, J.; Subbiah, J.; Grand, C.; Estrada, L. A.; So, F.;
Reynolds, J. R. Macromolecules 2011, 44, 6303.
(10) (a) Chen, Z.; Zheng, Y.; Yan, H.; Facchetti, A. J. Am. Chem. Soc.
2009, 131, 8. (b) Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J.
R.; Doltz, F.; Kestler, M.; Facchetti, A. Nature 2009, 457, 679. (c) Babel,
A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656.
(11) (a) Zhou, E.; Cong, J.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto,
K. Angew. Chem., Int. Ed. 2011, 50, 2799. (b) Zhan, X. W.; Tan, Z. A.;
Domercq, B.; An, Z. S.; Zhang, X.; Barlow, S.; Li, Y. F.; Zhu, D. B.;
Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246. (c) Chen,
J.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709.
(12) (a) Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.;
Yu, L.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649. (b) Liang, Y.; Feng, D.;
Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. J. Am. Chem. Soc. 2009, 131,
7792. (c) Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W.
Angew. Chem., Int. Ed. 2011, 50, 2995. (d) Price, S. C.; Stuart, A. C.;
Yang, L.; Zhou, H.; You, W. J. Am. Chem. Soc. 2011, 133, 4625.
(13) Usta, H.; Newman, C.; Chen, Z.; Facchetti, A. Adv. Mater. 2012,
24, 3678.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details and characterization data. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(14) (a) Bondi, A. J. Phys. Chem. 1964, 68, 441. (b) Rowland, R. S.;
Taylor, R. J. Phys. Chem. 1996, 100, 7384.
(15) Gamota, D.; Brazis, P.; Kalyanasundaram, K.; Zhang, J. Printed
Organic and Molecular Electronics; Kluwer Academic Publishers: New
York, 2004 .
ACKNOWLEDGMENTS
■
This work was supported by the Major State Basic Research
Development Program (Nos. 2009CB623601 and
2013CB933501) from the Ministry of Science and Technology,
and National Natural Science Foundation of China. The authors
thank beamline BL14B1 (Shanghai Synchrotron Radiation
Facility) for providing the beam time.
(16) Wen, Y.; Liu, Y.; Guo, Y.; Yu, G.; Hu, W. Chem. Rev. 2011, 111,
3358.
(17) (a) Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu,
H.; Liu, Y. Adv. Mater. 2012, 24, 4618. (b) Ko, S.; Verploegen, E.; Hong,
S.; Mondal, R.; Hoke, E. T.; Toney, M. F.; McGehee, M. D.; Bao, Z. J.
Am. Chem. Soc. 2011, 133, 16722. (c) Osaka, I.; Shimawaki, M.; Mori,
H.; Doi, I.; Miyazaki, E.; Koganezawa, T.; Takimiya, K. J. Am. Chem. Soc.
2012, 134, 3498. (d) Ha, J. S.; Kim, K. H.; Choi, D. H. J. Am. Chem. Soc.
2011, 133, 10364. (e) Bronstein, H.; Chen, Z.; Ashraf, R. S.; Zhang, W.;
Du, J.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.;
Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus, H.;
Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272. (f) Li, Y.;
Sonar, P.; Singh, S. P.; Soh, M. S.; van Meurs, M.; Tan, J. J. Am. Chem.
Soc. 2011, 133, 2198.
REFERENCES
■
(1) (a) Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
(b) Beaujuge, P. M.; Frec
(c) Guo, Y.; Yu, G.; Liu, Y. Adv. Mater. 2010, 22, 4427.
́
het, J. M. J. J. Am. Chem. Soc. 2011, 133, 20009.
(2) (a) Zaumseil, J.; Friend, R. H.; Sirringhaus, H. Nat. Mater. 2006, 5,
69. (b) Burgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H.-J.;
̈
Winnewisser, C. Adv. Mater. 2008, 20, 2217. (c) Huang, H.; Chen, Z.;
Ortiz, R. P.; Newman, C.; Usta, H.; Lou, S.; Youn, J.; Noh, Y.-Y.; K., J.;
Chen, L. X.; Facchetti, A.; Marks, T. J. Am. Chem. Soc. 2012, 134, 10966.
(3) (a) Chen, Z.; Lee, M. J.; Ashraf, R. S.; Gu, Y.; Albert-Seifried, S.;
Nielsen, M. M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.;
McCulloch, I.; Sirringhaus, H. Adv. Mater. 2012, 24, 647. (b) Krone-
meijer, A. J.; Gili, E.; Shahid, M.; Rivnay, J.; Salleo, A.; Heeney, M.;
Sirringhaus, H. Adv. Mater. 2012, 24, 1558.
(18) Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li,
W.; Lin, Y. Y.; Dodabalapur, A. Nature 2000, 404, 478.
20028
dx.doi.org/10.1021/ja310283f | J. Am. Chem. Soc. 2012, 134, 20025−20028