J.G. Małecki et al. / Polyhedron 49 (2013) 190–199
199
Table 5
(BImCOO)(PPh3)2] complexes, respectively. These data can be
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Isomerization of selected allyl compounds to their 1-propenyl derivatives catalyzed
by ruthenium-hydride complexes.a
Q
[Ru]
t (°C);
s
(h)
Conv. (%)b,c; Z/Ec
PhO
(1)
120; 3
120; 24
120; 3
82; 61/39
100; 62/38
18; 79/21
34; 78/22
(2)
References
120; 24
HO(CH2)4O
(1)
(2)
120; 3
120; 24
120; 3
120; 24
55; 49/51
100; 57/43
22; 68/32
37; 74/26
[1] L. Salvi, A. Salvini, F. Micoli, C. Bianchini, W. Oberhauser, J. Organomet. Chem.
692 (2007) 1442.
[2] C. Po Lau, S. Man Ng, G. Jia, Z. Lin, Coord. Chem. Rev. 251 (2007) 2223.
[3] C. Jun Yue, Y. Liu, R. He, J. Mol. Catal. A: Chem. 259 (2006) 17.
[4] F. Nipa Haque, A.J. Lough, R.H. Morris, Inorg. Chim. Acta 361 (2008) 3149.
[5] P. Buskens, D. Giunta, W. Leitner, Inorg. Chim. Acta 357 (2004) 1969.
[6] J. Bravo, J. Castro, S. Garcia-Fontana, M.C. Rodriguez-Martinez, G. Albertin, S.
Antoniutti, A. Manera, J. Organomet. Chem. 692 (2007) 5481.
[7] M. Chandra, A.N. Sahay, D.S. Pandey, M.C. Puerta, P. Valerga, J. Organomet.
Chem. 648 (2002) 39.
a
b
c
Qallyl/Ru = 200; without solvent; argon atmosphere.
Only 1-propenyl derivatives were detected as the products.
Determined by 1H NMR.
[8] W.R. Browne, R. Hage, J.G. Vos, Coord. Chem. Rev. 250 (2006) 1653.
[9] H. Tchouka, A. Meetsma, G. Molnár, L. Rechignat, W.R. Browne, J. Mol. Struct.
999 (2011) 39.
[10] H.-X. Yang, Y.-J. Liu, L. Zhao, K.-Z. Wang, Spectrochim. Acta, Part A 76 (2010)
146.
[Ru]-H
Q = PhO- or HO-(CH2)4-O-
Me
Q
Q
[11] S. Jasimuddin, Transition Met. Chem. 31 (2006) 724.
[12] B.J. Coe, S.J. Glenwright, Coord. Chem. Rev. 203 (2000) 5.
[13] N. Ahmad, J.J. Levinson, S.D. Robinson, M.F. Uttely, Inorg. Synth. 15 (1974) 48.
[14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman,
J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc.,
Wallingford, CT, 2009.
Scheme 1. Isomerization of selected O-allyl compounds catalyzed by Ru–H
complexes.
4. Conclusion
Two new hydride-carbonyl ruthenium(II) complexes with imid-
azole carboxylic acid ligands were synthesized and characterized
by infra red, proton and phosphorus nuclear magnetic resonance,
electronic absorption and emission spectroscopy and X-ray crystal-
lography. Based on the crystal structures, computational studies
were carried out in order to determine the electronic structure of
the complexes. The theoretical results obtained from NBO and
analysis of the interactions between ruthenium central ions and
imidazole derivative, carbonyl and hydride ligands were used to
explain the differences in bond lengths as well as the differences
in the stretching mode maxima in the IR spectra of the complexes.
The electronic structures of these complexes, presented in particu-
lar by the density of states diagrams, have been correlated with
their ability to fluoresce and used to analyze the UV-Vis spectra
as well as their electrochemical properties.
The catalytic activity in the reaction of the double bond migra-
tion in allyl phenyl ether and 4-allyloxybutan-1-ol for both of the
complexes was tested. Complex 1 was much more active than
complex 2. According to us, it is a result of the longer Ru–H bond
distance in complex 1 in comparison with complex 2. In complex
2, Ru–H bond is shorter and stronger, which makes difficult the
key step of the isomerization, i.e. alkene insertion to the double
bond.
[15] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[16] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[17] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chim. Acc. 97 (1997)
119.
[18] M.E. Casida, in: J.M. Seminario (Ed.), Recent Developments and Applications of
Modern Density Functional Theory, Theoretical and Computational Chemistry,
vol. 4, Elsevier, Amsterdam, 1996, p. 391.
[19] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO (Version 3.1).
[20] N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29 (2008) 839.
[21] CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.2.
[22] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl.
Crystallogr. 42 (2009) 339.
[23] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[24] S. Krompiec, M. Antoszczyszyn, M. Urbala, T. Bieg, Pol. J. Chem. 74 (2000) 737.
[25] A. Michiko, M. Teppei, C. Kazuhiro, Org. Lett. 9 (2007) 4347.
[26] M. Trivedi, M. Chandra, D.S. Pandey, M. Carmen Puertab, Pedro Valerga, J.
Organomet. Chem. 689 (2004) 879.
[27] A.R. Siedle, R.A. Newmark, L.H. Pignolet, Inorg. Chem. 25 (1986) 1345.
[28] A. Romero, A. Vegas, A. Santos, J. Organomet. Chem. 310 (1986) C8.
[29] M. Chandra, A.N. Sahay, D.S. Pandey, R.P. Tripathi, J.K. Saxena, V.J.M. Reddy, M.
Carmen Puerta, Pedro Valerga, J. Organomet. Chem. 689 (2004) 2256.
[30] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and
Biology, Oxford University Press, 1999.
[31] A.B.P. Lever, Inorg. Chem. 29 (1990) 1271.
[32] A.M. Bond, R. Colton, D.R. Mann, Inorg. Chem. 29 (1990) 4665.
[33] S. Krompiec, N. Kuz´nik, M. Krompiec, R. Penczek, J. Mrzigod, A. Tórz, J. Mol.
Catal. A: Chem. 253 (2006) 132.
[34] N. Kuz´nik, S. Krompiec, Coord. Chem. Rev. 251 (2007) 222.
[35] S. Krompiec, M. Krompiec, R. Penczek, H. Ignasiak, Coord. Chem. Rev. 252
(2008) 1818.
Acknowledgments
This work was supported by The State Committee for Scientific
Research, Project No. N N204 272237 and The National Science
Centre, Project No. 2011/01/B/ST5/06309. Mateusz Penkala and
Michal Filapek are grateful for scholarship from the UPGOW pro-
ject co-financed by the European Social Fund. Calculations have
been carried out in Wroclaw Centre for Networking and Supercom-
[36] S. Krompiec, N. Kuz´nik, R. Penczek, J. Rzepa, J. Mrowiec-Białon´ , J. Mol. Catal. A:
Chem. 219 (2004) 29.
[37] S. Krompiec, M. Pigulla, N. Kuz´nik, M. Krompiec, B. Marciniec, D. Chadyniak, J.
Kasperczyk, J. Mol. Catal. A: Chem. 225 (2005) 91.
[38] S. Krompiec, N. Kuz´nik, M. Urbala, J. Rzepa, J. Mol. Catal. A: Chem. 248 (2006)
198.
´
[39] S. Krompiec, J. Suwinski, M. Gibas, J. Grobelny, Pol. J. Chem. 70 (1996) 133.
[40] Shun-Ichi Murahashi, Ruthenium in Organic Synthesis, Wiley-VCH, 2006, ISBN
978-3-527-60579-8.
[41] S. Krompiec, M. Penkala, E. Kowalska, R. Penczek, P. Bujak, W. Danikiewicz, G.
Spólnik, A. Kita, I. Grudzka, Monatsh. Chem. 142 (2011) 1241.
[42] S. Krompiec, M. Penkala, K. Szczubiałka, E. Kowalska, Coord. Chem. Rev. 17–18
(2012) 2057.
Appendix A. Supplementary data
CCDC 854203 and 854210 contain the supplementary crystallo-
graphicdata for [RuH(CO)(MeImCOO)(PPh3)2]ÁCH3OH and [RuH(CO)