D. Niedzielska et al. / Journal of Molecular Structure 1032 (2013) 195–202
201
15N
The Au(III) and Pd(II) complexation also leads to large N(1)
the comparison of their
D
parameters to the literature values for
coord
Nð1Þ
shielding (|
D
| = 83.9 and 94.0/94.7 ppm, respectively), this ef-
analogous Pd(II) complexes having the known structure allows to
prove trans-geometry suggested previously on the basis of far-IR
studies.
coord
fect being ca. 10 ppm weaker for [Au(2bzpy)Cl3] than trans-
[Pd(2bzpy)2Cl2]. The same dependency was reported for many
other [AuLCl3] and trans-[PdL2Cl2] complexes with N(1)-monoden-
tately bonded azines (L = pyridine; 2-, 3- and 4-methylpyridine;
2,3-, 2,4-, 3,5- and 2,6-dimethylpyridine; 2,4,6-trimethylpyridine;
Appendix A. Supplementary material
2-, 3- and 4-phenylpyridine [21,41,42,59,60]).
Nð1Þ
In case of [Pd(2bzpy)2Cl2], the difference of dN(1) (or
D
)
Supplementary data associated with this article can be found, in
coord
parameters between both forms is less than 1 ppm, which excludes
the possibility these are two different geometric isomers. Further-
more, their N(1) shielding is much closer to that for trans-
Nð1Þ
[Pd(2ppy)2Cl2] than cis-[Pd(2ppy)2Cl2] (|
D
| = 94.0/94.7 ppm vs
References
coord
90.4 ppm and 82.9 ppm [21]), confirming the suggested trans-
geometry; it is well known that 15N shielding effects in platinide(II)
chloride–azine complexes are mainly determined by the type of a
donor atom in the trans-position in respect to a given nitrogen,
being larger for trans-[PdL2Cl2] than cis-[PdL2Cl2] species [61,62].
Thus, both forms are the same trans-[Pd(2bzpy)2Cl2] isomer, and
are probably rotamers, for which anisotropic effects have only a
slight influence at 15N shielding. Hence, the 15N NMR spectrum
of this complex is a final proof for its trans-geometry, this problem
being important from the viewpoint of predicting its catalytic
applications [5]. In fact, the geometry of [Pd(2bzpy)2Cl2] was never
evidenced due to the lack of the respective X-ray structure, and
was only suggested on the basis of ambiguous far-IR spectra: two
mPd–Cl bands, observed at 340 and 336 cmꢁ1 (by Hiraki et al. at
352 and 344 cmꢁ1 [2]), could potentially derive either from two
trans-rotamers or from one cis-isomer. Generally, for platinide(II)
chloride–azine complexes far-IR spectroscopy is an important tool
for geometry determination, but it can be misleading, not allowing
to judge between trans- and cis-species; as an example may serve
the recently studied [Pt(2ppy)2Cl2] complex, which originally
seemed to have trans-geometry (due to the observation of one
mPt–Cl band at 333 cmꢁ1; the respective 15N NMR spectrum was
not measured because of low solubility [21]), but finally proved
to be cis-[Pt(2ppy)2Cl2] (by single crystal X-ray studies, CCDC
799847 [45]).
[1] M.A. Cinellu, A. Zucca, S. Stoccoro, G. Minghetti, M. Manassero, M. Santoni, J.
Chem. Soc. Dalton Trans. (1995) 2865–2872.
[2] K. Hiraki, Y. Fuchita, K. Takechi, Inorg. Chem. 20 (1981) 4316–4320.
[3] R. Roy, T.K. Misra, C. Sinha, A. Mahapatra, A. Sanyal, Trans. Met. Chem. 22
(1997) 453–458.
[4] A.P. Shaw, M. Tilset, R.H. Heyn, S. Jakobsen, J. Coord. Chem. 64 (2011) 38–47.
[5] A. Bose, C.R. Saha, Ind. J. Chem. A 29 (1990) 461–469.
[6] K.K.Y. Kung, G.L. Li, L. Zou, H.C. Chong, Y.C. Leung, K.H. Wong, V.K.Y. Lo, C.M.
Che, M.K. Wong, Org. Biomol. Chem. 10 (2012) 925–930.
[7] Y. Zhu, B.R. Cameron, R. Mosi, V. Anastassov, J. Cox, L. Qin, Z. Santucci, M. Metz,
R.T. Skerlj, S.P. Fricker, J. Inorg. Biochem. 105 (2011) 754–762.
[8] S.P. Fricker, R.M. Mosi, B.R. Cameron, I. Baird, Y. Zhu, V. Anastassov, J. Cox, P.S.
Doyle, E. Hansell, G. Lau, J. Langille, M. Olsen, L. Qin, R. Skerlj, R.S.Y. Wong, Z.
Santucci, J.H. McKerrow, J. Inorg. Biochem. 102 (2008) 1839–1845.
[9] W. Henderson, B.K. Nicholson, S.J. Faville, D. Fan, J.D. Ranford, J. Organomet.
Chem. 631 (2001) 41–46.
[10] C.H.A. Goss, W. Henderson, A.L. Wilkins, C. Evans, J. Organomet. Chem. 679
(2003) 194–201.
[11] L. Messori, G. Marcon, M.A. Cinellu, M. Coronnello, E. Mini, C. Gabbiani, P.
Orioli, Bioorg. Med. Chem. 12 (2004) 6039–6043.
[12] M.P. Rigobello, L. Messori, G. Marcon, M.A. Cinellu, M. Bragadin, A. Folda, G.
Scutari, A. Biadoli, J. Inorg. Biochem. 98 (2004) 1634–1641.
[13] M. Coronnello, E. Mini, B. Caciagli, M.A. Cinellu, A. Bindoli, C. Gabbiani, L.
Messori, J. Med. Chem. 48 (2005) 6761–6765.
[14] W. Henderson, B.K. Nicholson, A.L. Wilkins, J. Organomet. Chem. 690 (2005)
4971–4977.
[15] K.J. Kilpin, W. Henderson, B.K. Nicholson, Polyhedron 26 (2007) 204–213.
[16] K.J. Kilpin, W. Henderson, B.K. Nicholson, Polyhedron 26 (2007) 434–447.
[17] M. Mphahlele, M. Papathanasopoulos, M.A. Cinellu, M. Coyanis, S. Mosebi, T.
Traut, R. Modise, J. Coates, R. Hewer, Bioorg. Med. Chem. 20 (2012) 401–407.
[18] X.P. Zhang, G. Yang, L. Wang, S.W. Ng, Acta Crystallogr. E 63 (2007) m1582.
[19] D. Fan, C.T. Yang, J.D. Ranford, P.F. Lee, J.J. Vittal, Dalton Trans. (2003) 2680–
2685.
[20] Cambridge Structural Database Version 5.33, Cambridge Crystallographic Data
Centre, Cambridge, UK, November 2011.
[21] L. Pazderski, J. Tousek, J. Sitkowski, L. Kozerski, E. Szlyk, Magn. Reson. Chem. 47
(2009) 658–665.
[22] L. Pazderski, T. Pawlak, J. Sitkowski, L. Kozerski, E. Szlyk, Magn. Reson. Chem.
47 (2009) 932–941.
In [Au(2bzpyꢀ)Cl2] the N(1) atom is ca. 7 ppm more shielded
Nð1Þ
than in [Au(2bzpy)Cl3] (|
D
| = 90.9 ppm vs 83.7 ppm), in contrast
coord
to the pair of [Au(2ppyꢀ)Cl2] and [Au(2ppy)Cl3], where the 15N
shielding effects were nearly the same (77.0 ppm vs 77.6 ppm
[21,22]).
[23] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, John Wiley and Sons, New York, 1978. p. 270–274, 346.
[24] CrysAlis CCD171 and RED171 Package of Programs, Oxford Diffraction, 2000.
4. Conclusions
}
[25] G.M. Sheldrick, SHELXS97 and SHELXL97, University of Gottingen, Germany,
2-benzylpyridine (2bzpy) forms three principal types of Au(III)
and Pd(II) compounds: salts containing protonated 2bzpyH+ cat-
ions, complexes with N(1)-monodentately bonded 2bzpy ligands
(e.g. [Au(2bzpy)Cl3], trans-[Pd(2bzpy)2Cl2]), and organometallics
with the N(1),C(20)-cyclometallated monoanionic 2bzpyꢀ ligands,
deprotonated in the benzyl side group at the ortho-carbon C(20)
(e.g. [Au(2bzpyꢀ)Cl2]).
1997.
[26] A.L. Spek, J. Appl. Cryst. 36 (2003) 7–13.
[27] T.V. Storozhuk, A.A. Udovenko, A.G. Mirochnik, N.V. Petrochenkova, V.E.
Karasek, Russ. J. Coord. Chem. 28 (2002) 175–182.
[28] P. Naumov, K. Sakurai, T. Ishikawa, J. Takahashi, S. Koshihara, Y. Ohashi, J. Phys.
Chem. A 109 (2005) 7264–7275.
[29] U. Pieper, D. Stalke, Organometallics 12 (1993) 1201–1206.
[30] M. Sievert, R. Dienelt, H. Bock, Acta Cryst. C 54 (1998) 674–676.
[31] M. Polamo, T. Repo, M. Leskela, Acta Chem. Scand. 51 (1997) 325–329.
[32] H.N. Adams, J. Strähle, Z. Anorg. Allg. Chem. 485 (1982) 65–80.
[33] V. Amani, N. Safari, H.R. Khavasi, Acta Cryst. E 66 (2010) m345.
[34] G.P.A. Yap, A.L. Rheingold, P. Das, R.H. Crabtree, Inorg. Chem. 34 (1995) 3474–
3476.
[35] K.J. Kilpin, J.D. Crowley, Polyhedron 29 (2010) 3111–3117.
[36] S. Stoccoro, G. Alesso, M.A. Cinellu, G. Minghetti, A. Zucca, M. Manassero, C.
Manassero, Dalton Trans. (2009) 3467–3477.
The X-ray structure of 2-benzylpyridinium tetrachloraurate(III)
exhibits it is a typical ionic pair, consisting of distinct 2bzpyH+ cat-
ions and [AuCl4]ꢁ anions. The 1H, 13C and 15N NMR spectra of
[Au(2bzpy)Cl3], trans-[Pd(2bzpy)2Cl2] and [Au(2bzpyꢀ)Cl2] reveal
1H
coord
some interesting dependencies between the respective
D
;
13C
coord
15N
coord
D
;
D
coordination shifts and the molecular structures. For
[Au(2bzpyꢀ)Cl2] the most characteristic phenomenon is the large
deshielding of the nitrogen-adjacent H(6) proton and of the metal-
lated C(20) carbon, as well as even more significant shielding of
the coordinated N(1) nitrogen; the latter effect occurs also for
2bzpyH+, [Au(2bzpy)Cl3] and trans-[Pd(2bzpy)2Cl2]. The 1H, 13C
and 15N NMR signals of trans-[Pd(2bzpy)2Cl2] are duplicate but dif-
fer only slightly, confirming the presence of two rotational isomers;
[37] Z.D. Hudson, C.D. Sanghvi, M.A. Rhine, J.J. Ng, S.D. Bunge, K.I. Hardcastle, M.R.
Saadein, C.E. MacBeth, J.F. Eichler, Dalton Trans. (2009) 7473–7480.
[38] N. Takenaka, R.S. Sarangthem, S.K. Selera, Org. Lett. 9 (2007) 2819–2822.
[39] A. Pevec, A. Demsar, J. Fluorine Chem. 129 (2008) 707–712.
[40] A. Pevec, M. Tekavec, A. Demsar, Polyhedron 30 (2011) 549–555.
[41] L. Pazderski, J. Tousek, J. Sitkowski, K. Malinakova, L. Kozerski, E. Szlyk, Magn.
Reson. Chem. 47 (2009) 228–238.
[42] L. Pazderski, T. Pawlak, J. Sitkowski, L. Kozerski, E. Szlyk, Magn. Reson. Chem.
48 (2010) 417–426.