ORGANIC
LETTERS
2013
Vol. 15, No. 1
92–95
The Palladium-Catalyzed Anti-Markovnikov
Hydroalkylation of Allylic Alcohol
Derivatives
Ryan J. DeLuca and Matthew S. Sigman*
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City,
Utah 84112, United States
Received November 13, 2012
ABSTRACT
A palladium-catalyzed hydroalkylation reaction of protected allylic alcohols using alkylzinc bromide reagents is reported. This account includes
numerous allylic, homoallylic, and bishomoallylic alcohol derivatives, all with a uniform selectivity of >20:1 for the anti-Markovnikov product. The
reaction features the ability to deliver enantiomerically enriched alcohols in unfunctionalized regions, which results from the catalyst avoiding
β-hydride elimination at the allylic position.
The remote functionalization of organic molecules is a
preeminent challenge in chemical synthesis.1 Common
isolated functional groups often displayed in natural prod-
ucts are alcohols, which are generally installed biosynthe-
tically via oxidation processes.2 In contrast to this elegant
enzymatic solution, the preparation of compounds con-
taining remote chiral alcohols often requires the use of
classical methods including organometallic additions to
preformed chiral epoxides3 or enantioselective dialkylzinc
additions to aldehydes,4 which each have fundamental syn-
thetic limitations. Additionally, enantioselective ketone re-
ductions (such as the CBS reduction or various transfer
hydrogenation reactions) are not capable of effectively dis-
criminating the prochiral faces of dialkyl ketones generally
required for installation of a remote chiral alcohol in natural
product synthesis.5 With a limited number of methods avail-
able for accessing these important structural motifs, we
became interested in developing an alternative synthetic
strategy. Specifically, we wished to expand our recently
reported Pd-catalyzed anti-Markovnikov hydroalkylation
of allylic amine derivatives to allylic alcohols.6 The successful
(1) (a) Bigi, M. A.; Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2012,
134, 9721. (b) White, M. C. Science 2012, 335, 807. (c) Davies, H. M. L.;
Du Bois, J.; Yu, J.-Q. Chem. Soc. Rev. 2011, 40, 1855. (d) Gutekunst,
W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. (e) Che, C.-M.; Lo,
V. K.-Y.; Zhou, C.-Y.; Huang, J.-S. Chem. Soc. Rev. 2011, 40, 1950.
(2) (a) Griggs, N. D.; Phillips, A. J. Org. Lett. 2008, 10, 4955. (b) Son,
S.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 2756. (c) Suh, Y.-G.; Kim,
S.-A.; Jung, J.-K.; Shin, D.-Y.; Min, K.-H.; Koo, B.-A.; Kim, H.-S.
Angew. Chem., Int. Ed. 1999, 38, 3545. (d) Trost, B. M.; Ceschi, M. A.;
(4) (a) Hatano, M.; Miyamoto, T.; Ishihara, K. J. Org. Chem. 2006,
71, 6474. (b) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117. (c) Pu,
L.; Yu, H.-B. Chem. Rev. 2001, 101, 757. (d) Bolm, C.; Hildebrand, J. P.;
~
Muniz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284. (e)
Hatano, M.; Miyamoto, T.; Ishihara, K. Adv. Synth. Catal. 2005, 347,
1561. (f) Blaser, H. U. Chem. Rev. 1992, 92, 935. (g) Knochel, P.; Jones,
P. Organozinc Reagents: A Practical Approach; Oxford University Press:
New York, 1999. (h) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. 1991,
30, 49. (i) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. (j) Xu, Q.; Wang,
G.; Pan, X.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 381. (k)
Knochel, P. Handbook of Functionalized Organometallics; Wiley-VCH:
Weinheim, Germany, 2005. (l) Noyori, R. Asymmetric Catalysis in Organic
Synthesis; Wiley: NewYork, 1994.
(5) (a) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986.
(b) Kawanami, Y.; Murao, S.; Ohga, T.; Kobayashi, N. Tetrahedron
2003, 59, 8411. (c) Zanotti-Gerosa, A.; Hems, W.; Groarke, M.; Han-
cock, F. Platin. Met. Rev. 2005, 49, 158.
€
Konig, B. Angew. Chem., Int. Ed. 1997, 36, 1486. (e) Statsuk, A. V.; Liu,
D.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 9546. (f) Katoh, O.;
Sugai, T.; Ohta, H. Tetrahedron: Asymmetry 1994, 5, 1935. (g) Lewis,
J. C.; Coelho, P. S.; Arnold, F. H. Chem. Soc. Rev. 2011, 40, 2003.
€
(3) (a) Dorling, E. K.; Ohler, E.; Mulzer, J. Tetrahedron Lett. 2000,
41, 6323. (b) Crimmins, M. T.; King, B. W. J. Am. Chem. Soc. 1998, 120,
9084. (c) He, L.; Byun, H.-S.; Bittman, R. J. Org. Chem. 1998, 63, 5696.
(d) Reddy, P. P.; Yen, K.-F.; Uang, B.-J. J. Org. Chem. 2002, 67, 1034.
(e) Bonini, C.; Chiummiento, L.; Lopardo, M. T.; Pullez, M.; Colobert,
ꢀ
F. o.; Solladie, G. Tetrahedron Lett. 2003, 44, 2695. (f) Wipf, P.; Xu, W.
J. Org. Chem. 1993, 58, 825. (g) Gravestock, M. B.; Knight, D. W.;
Lovell, J. S.; Thornton, S. R. J. Chem. Soc., Perkin Trans. 1 1999, 3143.
(h) Alam, M.; Wise, C.; Baxter, C. A.; Cleator, E.; Walkinshaw, A. Org.
Process Res. Dev. 2012, 16, 435. (i) Hanson, R. M. Chem. Rev. 1991, 91, 437.
(6) (a) DeLuca, R. J.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 11454.
(b) Urkalan, K. B.; Sigman, M. S. J. Am. Chem. Soc. 2009, 131, 18042.
r
10.1021/ol303129p
Published on Web 12/19/2012
2012 American Chemical Society