Organic Letters
Letter
Chem. Rev. 2011, 111, 7523. (d) Silva, L. F., Jr. Molecules 2006, 11,
421. (e) Singh, F. V.; Wirth, T. Synthesis 2013, 45, 2499.
̃
(2) (a) Muniz, M. K. In Comprehensive Organic Synthesis II; Knochel,
Parrot, I.; Martinez, J.; Dewynter, G. Angew. Chem., Int. Ed. 2007, 46,
7488. (f) Kern, N.; Felten, A.-S.; Weibel, J.-M.; Pale, P.; Blanc, A. Org.
Lett. 2014, 16, 6104. (g) Sirindil, F.; Miaskiewicz, S.; Kern, N.; Lalaut,
A.; Felten, A.-S.; Weibel, J.-M.; Pale, P.; Blanc, A. Tetrahedron 2017,
73, 5096.
P., Molander, G. A., Eds.; Elsevier: Netherland, 2014; Vol. 3, pp 741−
756. (b) Wang, S.-H.; Tu, Y.-Q.; Tang, M. In Comprehensive Organic
Synthesis II; Knochel, P., Molander, G. A., Eds.; Elsevier: Netherland,
2014; Vol. 3, pp 795−852.
(3) (a) Candeias, N. R.; Trindade, A. F.; Gois, P. M. P.; Afonso, C.
A. M. In Comprehensive Organic Synthesis II; Knochel, P., Molander,
G. A., Eds.; Elsevier: Netherland, 2014; Vol. 3, pp 944−991.
(b) Kirmse, W. Eur. J. Org. Chem. 2002, 2002, 2193. (c) Zhang, Z.;
Wang, J. Tetrahedron 2008, 64, 6577.
(4) (a) Butkus, E. In Comprehensive Organic Synthesis II; Knochel, P.,
Molander, G. A., Eds.; Elsevier: Netherland, 2014; Vol. 3, pp 853−
886. (b) Favorskii, A. E. J. Russ. Phys. Chem. Soc. 1894, 26, 590.
(5) (a) Wu, W.; Xiao, M.; Wang, J.; Li, Y.; Xie, Z. Org. Lett. 2012,
14, 1624. (b) Kym, P. R.; Wilson, S. R.; Gritton, W. H.;
Katzenellenbogen, J. A. Tetrahedron Lett. 1994, 35, 2833.
(6) Selected examples, see: (a) Baran, P. S.; Richter, J. M. J. Am.
Chem. Soc. 2005, 127, 15394. (b) Mascitti, V.; Corey, E. J. J. Am.
Chem. Soc. 2006, 128, 3118. (c) Angeles, A. R.; Dorn, D. C.; Kou, C.
A.; Moore, M. A. S.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2007, 46,
1451. (d) Diethelm, S.; Carreira, E. M. J. Am. Chem. Soc. 2015, 137,
6084. (e) Chapman, L. M.; Beck, J. C.; Wu, L.; Reisman, S. E. J. Am.
Chem. Soc. 2016, 138, 9803.
(12) We have recently developed some interesting reactions of
amides, enamides, and oxime ethers including a contiguous N−O
bond; see: (a) Takeda, N.; Futaki, E.; Kobori, Y.; Ueda, M.; Miyata,
O. Angew. Chem., Int. Ed. 2017, 56, 16342. (b) Takeda, N.; Arisawa,
N.; Miyamoto, M.; Kobori, Y.; Shinada, T.; Miyata, O.; Ueda, M. Org.
Chem. Front. 2019, 6, 3721. (c) Sugita, S.; Takeda, N.; Tohnai, N.;
Miyata, M.; Miyata, O.; Ueda, M. Angew. Chem., Int. Ed. 2017, 56,
2469. (d) Takeda, N.; Ueda, M.; Kagehira, S.; Komei, H.; Tohnai, N.;
Miyata, M.; Naito, T.; Miyata, O. Org. Lett. 2013, 15, 4382.
(13) For reviews, see: (a) Balasubramaniam, S.; Aidhen, I. S.
Synthesis 2008, 2008, 3707. (b) Sato, T.; Yoritate, M.; Tajima, H.;
Chida, N. Org. Biomol. Chem. 2018, 16, 3864. (c) Pace, V.; Holzer,
W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697. (d) Senatore, R.;
Ielo, L.; Monticelli, S.; Castoldi, L.; Pace, V. Synthesis 2019, 51, 2792.
(e) Pace, V.; Holzer, W. Aust. J. Chem. 2013, 66, 507. (f) Kaiser, D.;
Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev. 2018, 47, 7899.
For selected examples for nucleophilic addition of N-alkoxylactam
with C-nucleophiles, see: (g) Yanagita, Y.; Nakamura, H.; Shirokane,
K.; Kurosaki, Y.; Sato, T.; Chida, N. Chem. - Eur. J. 2013, 19, 678.
(h) Vincent, G.; Karila, D.; Khalil, G.; Sancibrao, P.; Gori, D.;
̈
Kouklovsky, C. Chem. - Eur. J. 2013, 19, 9358. (i) Jakel, M.; Qu, J.;
(7) Selected examples, see: (a) Ambrosini, M.; Baricordi, N.;
Benetti, S.; De Risi, C.; Pollini, G. P.; Zanirato, V. Tetrahedron:
Schnitzer, T.; Helmchen, G. Chem. - Eur. J. 2013, 19, 16746.
(j) Vincent, G.; Guillot, R.; Kouklovsky, C. Angew. Chem., Int. Ed.
2011, 50, 1350.
̈
Asymmetry 2009, 20, 2145. (b) Fohlisch, B.; Radl, A.; Schwetzler-
Raschke, R.; Henkel, S. Eur. J. Org. Chem. 2001, 2001, 4357.
(c) Maiti, S. B.; Chaudhuri, S. R. R.; Chatterjee, A. Synthesis 1987,
1987, 806. (d) Jiang, X.-L.; Shi, Y.; Tian, W.-S. J. Org. Chem. 2017, 82,
(14) Ring contraction via β-bromo-O,O-hemiacetal as a tentative
intermediate was recently reported; see: Watanabe, K.; Hamada, T.;
Moriyama, K. Org. Lett. 2018, 20, 5803.
̌
́
4402. (e) Kammath, V. B.; Solomek, T.; Ngoy, B. P.; Heger, D.; Klan,
P.; Rubina, M.; Givens, R. S. J. Org. Chem. 2013, 78, 1718. (f) Liu, W.;
Huang, W.; Lan, T.; Qin, H.; Yang, C. Tetrahedron 2018, 74, 2298.
(g) Zhang, L.; Koreeda, M. Org. Lett. 2002, 4, 3755. (h) Sadhukhan,
S.; Baire, B. Org. Lett. 2018, 20, 1748. (i) Behnke, N. E.; Siitonen, J.
(15) (a) Dallagi, T.; Saidi, M.; Jaouen, G.; Top, S. Appl. Organomet.
Chem. 2013, 27, 28. (b) Battula, S. R. K.; Rama Kishore Putta, V. P.;
Subbareddy, G. V.; Chakravarthy, I. E.; Saravanan, V. Org. Biomol.
Chem. 2017, 15, 3742. (c) Golten, S.; Patinec, A.; Akoumany, K.;
Rocher, J.; Graton, J.; Jacquemin, D.; Le Questel, J.-Y.; Tessier, A.;
Lebreton, J.; Blot, V.; Pipelier, M.; Douillard, J.-Y.; Le Pendu, J.;
Linclau, B.; Dubreuil, D. Eur. J. Med. Chem. 2019, 178, 195.
(16) When other organometallic reagents (PhZnI, Ph2Zn, and
Ph3Al) were used in the nucleophilic addition/ring contraction of 7a,
the α-benzoylpyrrolidine 8aA was not obtained, and 7a was recovered
in all cases.
(17) The reaction of N-alkoxylactam 7a with EtMgBr provided α-
benzaldehyde adduct 9 without formation of a ring-contracted
product. The precise reason for the different reactivities of ArMgBr
and EtMgBr was unclear.
(18) For hemiacetal formations from Weinreb amides, see: Castoldi,
L.; Holzer, W.; Langer, T.; Pace, V. Chem. Commun. 2017, 53, 9498.
(19) When excess amounts of PhMgBr (5 equiv) were used for the
nucleophilic phenylation/ring contraction of 7a, α-benzoylpyrrolidine
8aA was obtained without formation of pyrrolidinyl alcohol 14. This
result also supports that chelate intermediate G is generated in situ
under optimized conditions.
H.; Chamness, S. A.; Kurti, L. Org. Lett. 2020, 22, 5715. (j) Oliver, S.
̈
̈
F.; Hogenauer, K.; Simic, O.; Antonello, A.; Smith, M. D.; Ley, S. V.
Angew. Chem., Int. Ed. 2003, 42, 5996. (k) Elford, T. G.; Hall, D. G. J.
Am. Chem. Soc. 2010, 132, 1488.
(8) (a) Sakai, T.; Amano, E.; Kawabata, A.; Takeda, A. J. Org. Chem.
1980, 45, 43. (b) Sakai, T.; Katayama, T.; Takeda, A. J. Org. Chem.
1981, 46, 2924. (c) Sakai, T.; Tabata, H.; Takeda, A. J. Org. Chem.
1983, 48, 4618. (d) Barbee, T. R.; Guy, H.; Heeg, M. J.; Albizati, K. F.
J. Org. Chem. 1991, 56, 6773. (e) Sosnovsky, G.; Cai, Z.-W. J. Org.
̌
̌
Chem. 1995, 60, 3414. (f) Babicand, A.; Pecar, S. Synlett 2008, 1155.
(9) For selected examples, see: (a) Newman, M. S.; Dalton, C. K. J.
Org. Chem. 1965, 30, 4126. (b) Moos, W. H.; Gless, R. D.; Rapoport,
H. J. Org. Chem. 1981, 46, 5064. (c) Wang, G. T.; Wang, S.; Chen, Y.;
Gentles, R.; Sowin, T. J. Org. Chem. 2001, 66, 2052. (d) Khan, F. A.;
Dash, J.; Sudheer, C.; Sahu, N.; Parasuraman, K. J. Org. Chem. 2005,
70, 7565. (e) Kobayashi, S.; Kinoshita, T.; Kawamoto, T.; Wada, M.;
Kuroda, H.; Masuyama, A.; Ryu, I. J. Org. Chem. 2011, 76, 7096.
(f) Kobayashi, S.; Yokoi, T.; Inoue, T.; Hori, Y.; Saka, T.; Shimomura,
T.; Masuyama, A. J. Org. Chem. 2016, 81, 1484. (g) Kobayashi, S.;
Hori, Y.; Yoneyama, R.; Tamura, T.; Masuyama, A. J. Org. Chem.
2019, 84, 15549.
(20) Although the ring-opening product has not been obtained to
date, the possibility that ring-opening and intramolecular SN2-type
cyclization in the reaction pathway cannot be excluded.
(21) One of the possibilities is that the difference in the reactivities
of 7a and 19 would be attributed to the pyramidalization of the amide
functional group.
(10) For ring contraction of α-halo δ-lactam, see: (a) Henning, R.;
Urbach, H. Tetrahedron Lett. 1983, 24, 5339. (b) Kariyone, K. Chem.
Pharm. Bull. 1960, 8, 1110. (c) Francis, W. C.; Thornton, J. R.;
Werner, J. C.; Hopkins, T. R. J. Am. Chem. Soc. 1958, 80, 6238.
(d) Hino, K.; Nagai, Y.; Uno, H. Chem. Pharm. Bull. 1988, 36, 2386.
(11) For other types of ring contraction of lactam, see: (a) Drouin,
A.; Lessard, J. Tetrahedron Lett. 2006, 47, 4285. (b) Drouin, A.;
Winter, D. K.; Pichette, S.; Aubert-Nicol, S.; Lessard, J.; Spino, C. J.
Org. Chem. 2011, 76, 164. (c) Pichette, S.; Aubert-Nicol, S.; Lessard,
J.; Spino, C. Eur. J. Org. Chem. 2012, 2012, 1328. (d) Pichette, S.;
Aubert-Nicol, S.; Lessard, J.; Spino, C. J. Org. Chem. 2012, 77, 11216.
For ring contraction of N-activated lactams, see: (e) Farran, D.;
E
Org. Lett. XXXX, XXX, XXX−XXX