ChemComm
Communication
The authors gratefully acknowledge the National Science
Council of Republic of China for financial support.
Notes and references
1 (a) J. D. Luo, Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu,
H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu and B. Z. Tang, Chem.
Commun., 2001, 1740; (b) W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam,
Z. Wang, Y. Liu, H. S. Kwok, Y. Ma and B. Z. Tang, Adv. Mater., 2010,
22, 2159; (c) Y. Liu, S. Chen, J. W. Y. Lam, P. Lu, R. T. K. Kwok,
F. Mahtab, H. S. Kwok and B. Z. Tang, Chem. Mater., 2011, 23, 2536.
2 (a) T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker and
J. Salbeck, Chem. Rev., 2007, 107, 1011; (b) J. Liu, J. W. Y. Lam and
B. Z. Tang, Chem. Rev., 2009, 109, 5799.
Fig. 2 PL spectra of polyamide CN-PA in NMP–water with different water
fractions (fw/vol%) (solution concentration is 10 mM and excited with absmax
respectively). Photographs were taken under illumination of a 365 nm UV light.
´
3 (a) S. Hecht and J. M. J. Frechet, Angew. Chem., Int. Ed., 2001, 40, 74;
(b) L. Chen, S. Xu, D. McBranch and D. Whitten, J. Am. Chem. Soc.,
2000, 122, 9302.
4 (a) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009,
4332; (b) M. Wang, X. Pan, X. Q. Fang, L. Guo, W. Q. Liu,
C. N. Zhang, Y. Huang, L. H. Hu and S. Y. Dai, Adv. Mater., 2010,
22, 5526; (c) H. Wang, F. Li, I. Ravia, B. R. Gao, Y. P. Li, V. Medvedev,
H. B. Sun, N. Tessler and Y. G. Ma, Adv. Funct. Mater., 2011, 21, 3770.
5 (a) B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, J. Am. Chem. Soc.,
2002, 124, 14410; (b) S. Jayanty and T. P. Radhakrishnan, Chem.–Eur. J.,
2004, 10, 791; (c) J. Xu, L. Wen, W. Zhou, J. Lv, Y. Guo, M. Zhu, H. Liu,
Y. Li and L. Jiang, J. Phys. Chem. C, 2009, 113, 5924.
6 (a) A. Qin, J. W. Y. Lam and B. Z. Tang, Prog. Polym. Sci., 2012,
37, 182; (b) Y. N. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev.,
2011, 40, 5361.
7 Y. Li, F. Li, H. Zhang, Z. Xie, W. Xie, H. Xu, B. Li, F. Shen, L. Ye,
M. Hanif, D. Ma and Y. Ma, Chem. Commun., 2007, 231.
8 (a) M. Thelakkat, Macromol. Mater. Eng., 2002, 287, 442; (b) Y. Shirota,
J. Mater. Chem., 2005, 15, 75; (c) Y. Shirota and H. Kageyama,
Chem. Rev., 2007, 107, 953; (d) H. J. Yen and G. S. Liou,
Polym. Chem., 2012, 3, 255; (e) H. J. Yen, H. Y. Lin and G. S. Liou,
Chem. Mater., 2011, 23, 1874; ( f ) H. J. Yen and G. S.
Liou, Chem. Mater., 2009, 21, 4062; (g) C. J. Chen, H. J. Yen,
W. C. Chen and G. S. Liou, J. Mater. Chem., 2012, 22, 14085;
(h) C. J. Chen, H. J. Yen, W. C. Chen and G. S. Liou, J. Polym. Sci.,
Part A: Polym. Chem., 2011, 49, 3709; (i) Y. C. Hu, C. J. Chen,
H. J. Yen, K. Y. Lin, J. M. Yeh, W. C. Chen and G. S. Liou,
J. Mater. Chem., 2012, 22, 20394.
9 (a) Z. J. Ning, Z. Chen, Q. Zhang, Y. L. Yan, S. X. Qian, Y. Cao and
H. Tian, Adv. Funct. Mater., 2007, 17, 3799; (b) Y. Liu, X. T. Tao,
F. Z. Wang, X. N. Dang, D. C. Zou, Y. Ren and M. H. Jiang, J. Phys.
Chem. C, 2008, 112, 3975.
10 A. Babel, D. Li, Y. Xia and S. A. Jenekhe, Macromolecules, 2005,
38, 4705.
Fig. 3 SEM images of ES nanofibers of CN-PI (left) and CN-PA (right).
Comparing the optical properties summarized in Table 1, CN-PA
in the fiber state showed a larger bathochromic absorption shift
from NMP solution than the case of CN-PI, which could be
attributed to the stronger inter-chain interactions of CN-PA
(e.g., hydrogen-bonding of amide linkage) than CN-PI. Fig. 1
shows the optical properties and PL photographs of dilute
solutions, thin films, and ES fibers of these two polymers.
Interestingly, the ES fibers of CN-PI and CN-PA exhibited
notable PL emission with enhanced quantum yield up to 70%
when compared with their solid films.
In summary, two newly AIE-active cyanoarylamine-containing
high-performance polymers, polyimide CN-PI and polyamide 11 (a) C. C. Kuo, C. H. Lin and W. C. Chen, Macromolecules, 2007,
40, 6959; (b) S. Chuangchote, T. Sagawa and S. Yoshikawa, Jpn. J.
Appl. Phys., 2008, 47, 787; (c) L. Xu, H. W. Song, B. A. Dong, Y. Wang,
X. Bai, G. L. Wang and Q. Liu, J. Phys. Chem. C, 2009, 113, 9609;
CN-PA, were prepared via one-step imidation and direct phos-
phorylation polycondensation, respectively, and could be
utilized to prepare nanofibers by an ES method. SEM results
showed that the obtained nanostructures were quite uniform
without any beads on the nanofiber surfaces. Notably, the
CN-TPA-based polymers having an AIE feature are highly emis-
sive in the solid state with PL quantum yield up to 65%, which
could be further enhanced in the form of ES nanofibers (up to
70% of PL quantum yield). These results demonstrate that
incorporation of the CN-TPA luminogen into high-performance
polymers is a feasible approach to prepare efficient luminescent
materials for optoelectronic applications.
(d) H. C. Chen, C. T. Wang, C. L. Liu, Y. C. Liu and W. C. Chen,
J. Polym. Sci., Part B: Polym. Phys., 2009, 47, 463.
12 G. S. Liou and H. J. Yen, Polyimides, in Polymer Science:
¨
A Comprehensive Reference, ed. K. Matyjaszewski and M. Moller,
Elsevier BV, Amsterdam, 2012, vol. 5, pp. 497–535.
13 J. C. Chen, W. Y. Tseng, I. H. Tseng and M. H. Tsai, Adv. Mater. Res.,
2011, 287–290, 1388.
14 (a) N. Yamazaki, F. Higashi and J. Kawabata, J. Polym. Sci., Polym.
Chem. Ed., 1974, 12, 2149; (b) N. Yamazaki, M. Matsumoto and
F. Higashi, J. Polym. Sci., Polym. Chem. Ed., 1975, 13, 1373.
15 W. Z. Yuan, Y. Y. Gong, S. M. Chen, X. Y. Shen, J. W. Y. Lam, P. Lu,
Y. W. Lu, Z. M. Wan, R. R. Hu, N. Xie, H. S. Kwok, Y. M. Zhang,
J. Z. Sun and B. Z. Tang, Chem. Mater., 2012, 24, 1518.
c
632 Chem. Commun., 2013, 49, 630--632
This journal is The Royal Society of Chemistry 2013