Organic Process Research & Development
Article
Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J.
Am. Chem. Soc. 2004, 126, 13584−13585. (g) Aggarwal, V. K.; Fang,
G. Y.; Schmidt, A. T. J. Am. Chem. Soc. 2005, 127, 1642−1643.
(h) Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett.
2005, 7, 307−310. (i) Jagt, R. B. C.; Toullec, P. Y.; Geerdink, D.; de
Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Angew. Chem., Int. Ed. 2006,
45, 2789−2791. (j) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J.
Am. Chem. Soc. 2007, 129, 5336−5337. (k) Ohmura, T.; Awano, T.;
Suginome, M. J. Am. Chem. Soc. 2010, 132, 13191−13193.
(l) Crampton, R.; Woodward, S.; Fox, M. Adv. Synth. Catal. 2011,
(4.82 mL, 37 wt % in water, 64.8 mmol) was charged in a single
portion, and wet milling was commenced (12800 rpm) using
an IKA magic LAB. The reaction mixture was warmed to 60 °C,
and the remaining solution of L-DBTA in MeCN/water (95:5
v/v) was charged over 3.5 h. The slurry was aged at 60 °C with
continuous wet milling until chiral HPLC analysis indicated the
white crystalline solid was >90% de (10 h).21 The reaction
mixture was cooled linearly to 20 °C over 2 h, and wet milling
was stopped. The slurry was filtered through a medium-
porosity glass-fritted funnel, and the filter cake was washed with
MeCN (2 × 662 mL). The filter cake was dried over vacuum
with a nitrogen sweep to provide (S)-amine·L-DBTA 4 as a
white solid (355 g, 83%). The enantiomeric excess of (S)-amine
was determined to be 91% by chiral HPLC (Chiralpak AY-H
column, 4.6 mm × 100 mm, 5 μm, eluent: heptane/EtOH/
diethylamine = 95:5:0.2 (v/v), 1 mL/min, 20 °C, 254 nm.
tr(minor): 3.9 min, tr(major): 5.1 min).
́
353, 903−906. (m) Nguyen, T. B.; Wang, Q.; Gueritte, F. Chem. - Eur.
J. 2011, 17, 9576−9580. (n) Han, Z.; Busch, R.; Fandrick, K. R.;
Meyer, A.; Xu, Y.; Krishnamurthy, D. K.; Senanayake, C. H.
Tetrahedron 2011, 67, 7035. (o) Crampton, R. H.; Fox, M.;
Woodward, S. Tetrahedron: Asymmetry 2013, 24, 599−605.
(p) Ghislieri, D.; Green, A. P.; Pontini, M.; Willies, S. C.; Rowles,
I.; Frank, A.; Grogan, G.; Turner, N. J. J. Am. Chem. Soc. 2013, 135,
10863−10869.
(3) (a) Pflum, D. A.; Wilkinson, H. S.; Tanoury, G. J.; Kessler, D. W.;
Kraus, H. B.; Senanayake, C. H.; Wald, S. A. Org. Process Res. Dev.
2001, 5, 110−115. (b) Zimmerman, V.; Cavoy, E.; Hamende, M.
Process for Preparing (S) and (R)-2-[4-(4-Chlorobenzhydryl)
Piperazine-1-yl]-Ethoxyacetamide. U.S. Patent 7,199,241 B1, 2007.
(4) (a) Clemo, G. R.; Gardner, C.; Raper, R. J. Chem. Soc. 1939,
1958−1960. (b) Opalka, C. J.; D’Ambra, T. E.; Faccone, J. J.; Bodson,
G.; Cossement, E. Synthesis 1995, 766−768. (c) Kim, J.-S.; Park, Y.-K.;
Ha, M.-C. Process for Preparing Optically Active Cetirizine or its Salt.
PCT Int. Appl. WO 2005073207 A1, 2005. (d) Mezei, T.; Molnar, E.;
Trinka, P.; Bartha, F.; Katona, Z.; Vereczkey Donath, G.; Nagy, K.;
Pongo, L.; Lukacs, G.; Porcs-Makkay, M.; Evinger, Z.; Simig, G. A
Process for Producing Optically Active Carbamates as Pharmaceutical
Intermediates. PCT Int. Appl. WO 2007066163 A2, 2007. (e) Palacio,
M.; Ates, C. Pyroglutamate Salts and their Use in the Optical
Resolution of Intermediates for the Synthesis of Dextrocetirizine and
Levocetirizine. US 20080269489 A1, 2008. (f) Ha, T. H.; Kim, W. J.;
Baek, J. O.; Jang, S. M.; Lee, J. C.; Lee, Y. J.; Suh, K. H.; Lee, G. S.
Method for Preparing (R)-(−)-1-[(4-chlorophenyl)phenylmethyl]-
piperazine. PCT Int. Appl. WO 2009078627 A2, 2009.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Complete experimental details, kinetic data and analysis,
AUTHOR INFORMATION
Corresponding Author
Present Address
Y.-Q.F. and M.M.B.: Snapdragon Chemistry, 85 Bolton St,
Cambridge, Massachusetts 02140, United States.
Notes
■
The authors declare no competing financial interest.
(5) Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Keβeler, M.;
ACKNOWLEDGMENTS
■
Sturmer, R.; Zelinski, T. Angew. Chem., Int. Ed. 2004, 43, 788−824.
̈
We thank Dr. L. Steven Hollis for valuable discussions and
support with the acquisition and analysis of NMR spectroscopy
data.
(6) For reviews, see: (a) Ebbers, E. J.; Ariaans, G. J. A.; Houbiers, J. P.
M.; Bruggink, A.; Zwanenburg, B. Tetrahedron 1997, 53, 9417−9476.
(b) Anderson, N. G. Org. Process Res. Dev. 2005, 9, 800−813.
(c) Brands, K. M. J.; Davies, A. J. Chem. Rev. 2006, 106, 2711−2733.
(7) For recent examples describing dynamic kinetic resolution of
racemic diarylmethyl amines, see: (a) reference 2o. (b) Ji, Y.; Shi, L.;
Chen, M.-W.; Feng, G.-S.; Zhou, Y.-G. J. Am. Chem. Soc. 2015, 137,
10496−10499.
REFERENCES
■
(1) For recent examples, see: (a) Burgess, S. J.; Kelly, J. X.; Shomloo,
S.; Wittlin, S.; Brun, R.; Liebmann, K.; Peyton, D. H. J. Med. Chem.
́
2010, 53, 6477−6489. (b) Montolio, M.; Gregori-Puigjane, E.; Pineda,
(8) Dong, Y.; Li, R.; Lu, J.; Xu, X.; Wang, X.; Hu, Y. J. Org. Chem.
2005, 70, 8617−8620.
(9) Tan, H.; Cui, S.; Gahm, K.; Luu, V.; Walker, S. Org. Process Res.
Dev. 2011, 15, 53−63.
(10) Details describing the investigation of resolving agents and
(11) Kinetic data and analysis are available as Supporting
D.; Mestres, J.; Navarro, P. J. Med. Chem. 2012, 55, 9838−9846.
(c) Zhu, H. Y.; Desai, J.; Cooper, A. B.; Wang, J.; Rane, D. F.;
Kirschmeier, P.; Strickland, C.; Liu, M.; Nomeir, A. A.; Girijavallabhan,
̌
V. M. Bioorg. Med. Chem. Lett. 2014, 24, 1228−1231. (d) Caglic, D.;
Krutein, M. C.; Bompiani, K. M.; Barlow, D. J.; Benoni, G.; Pelletier, J.
C.; Reitz, A. B.; Lairson, L. L.; Houseknecht, K. L.; Smith, G. R.;
Dickerson, T. J. J. Med. Chem. 2014, 57, 669−676. (e) Horne, D. B.;
Tamayo, N. A.; Bartberger, M. D.; Bo, Y.; Clarine, J.; Davis, C. D.;
Gore, V. K.; Kaller, M. R.; Lehto, S. G.; Ma, V. V.; Nishimura, N.;
Nguyen, T. T.; Tang, P.; Wang, W.; Youngblood, B. D.; Zhang, M.;
Gavva, N. R.; Monenschein, H.; Norman, M. H. J. Med. Chem. 2014,
57, 2989−3004.
(12) Details of these experiments are available as Supporting
(13) For select examples of attrition-enhanced dissolution in the
context of chiral resolution, see: (a) Noorduin, W. L.; Izumi, T.;
Millemaggi, A.; Leeman, M.; Meekes, H.; Van Enckevort, W. J. P.;
Kellogg, R. M.; Kaptein, B.; Vlieg, E.; Blackmond, D. G. J. Am. Chem.
Soc. 2008, 130, 1158−1159. (b) Noorduin, W. L.; van der Asdonk, P.;
Bode, A. A.; Meekes, H.; van Enckevort, W. J. P.; Vlieg, E.; Kaptein, B.;
van der Meijden, M. W.; Kellogg, R. M.; Deroover, G. Org. Process Res.
Dev. 2010, 14, 908−911. (c) Wilmink, P.; Rougeot, C.; Wurst, K.;
Sanselme, M.; van der Meijden, M.; Saletra, W.; Coquerel, G.; Kellogg,
R. M. Org. Process Res. Dev. 2015, 19, 302−308. For select examples of
the effect of particle size on the rate of a heterogeneous reaction, see:
(2) (a) Brown, W.; Plobeck, N. New Asymmetric Process for the
Preparation of Diarylmethylpiperazine Derivatives and Novel Asym-
metric Diarylmethylamines as Intermediates. PCT. Int. Appl. WO
2002070492 A1, 2002. (b) Pflum, D. A.; Krishnamurthy, D.; Han, Z.;
Wald, S. A.; Senanayake, C. H. Tetrahedron Lett. 2002, 43, 923−926.
(c) Plobeck, N.; Powell, D. Tetrahedron: Asymmetry 2002, 13, 303−
310. (d) Hermanns, N.; Dahmen, S.; Bolm, C.; Brase, S. Angew. Chem.,
Int. Ed. 2002, 41, 3692−3694. (e) Hayashi, T.; Kawai, M.; Tokunaga,
N. Angew. Chem., Int. Ed. 2004, 43, 6125−6128. (f) Tokunaga, N.;
̈
E
Org. Process Res. Dev. XXXX, XXX, XXX−XXX