1340 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 9
Letters
Steric Factor in Medicinal Chemistry. Dissymmetric Probes of
Pharmacological Receptors; Plenum Press: New York, 1993; pp
320-321. (d) Ikeura, Y.; Ishichi, Y.; Tanaka, T.; Fujishima, A.;
Murabayashi, M.; Kawada, M.; Ishimaru, T.; Kamo, I.; Doi, T.;
Natsugari, H. Axially Chiral N-Benzyl-N,7-dimethyl-5-phenyl-
1,7-naphthyridine-6-carboxamide Derivatives as Tachykinin NK1
Receptor Antagonists: Determination of the Absolute Stereo-
chemical Requirements. J . Med. Chem. 1998, 41, 4232-4239.
(e) Natsugari, H.; Ikeura, Y.; Kamo, I.; Ishimaru, T.; Ishichi, Y.;
Fujishima, A.; Tanaka, T.; Kasahara, F.; Kawada, M.; Doi, T.
Axially Chiral 1,7-Naphthyridine-6-carboxamide Derivatives as
Orally Active Tachykinin NK1 Receptor Antagonists: Synthesis,
Antagonistic Activity, and Effects on Bladder Functions. J . Med.
Chem. 1999, 42, 3982-3993.
The novel derivatives show a preference for the 5-HT7
receptor subtype and have been characterized as 5-HT7
receptor antagonists. (6aR,aS)-14 is a particularly selec-
tive and potent 5-HT7 receptor antagonist. This will
make it useful as a pharmacological tool in 5-HT
research.
Ack n ow led gm en t. We gratefully acknowledge Dr.
Hans Selander for a generous gift of starting material
and the Department of Lead Discovery, AstraZeneca
R&D So¨derta¨lje, for help with some of the radioligand
binding and efficacy studies. Financial support was
obtained from AstraZeneca R&D So¨derta¨lje, So¨derta¨lje.
(8) (a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling
Reactions of Organoboron Compounds. Chem. Rev. 1995, 95,
2457-2483. (b) Suzuki, A. Recent Advances in the Cross-
Coupling Reactions of Organoboron Derivatives with Organic
Electrophiles, 1995-1998. J . Organomet. Chem. 1999, 576, 147-
168.
(9) Microwave heating was carried out with a MicroWell 10 single-
mode microwave cavity from Labwell AB, Uppsala, Sweden.
(10) The 8:2 mixture of (6aR,aS)- and (6aR,aR)-13 was a residue from
the reaction mixture that was purified to give pure (6aR,aR)-13.
(11) The following programs have been used: (a) SHELXS: Sheld-
rick, G. M. Phase annealing in SHELX-90: direct methods for
larger structures. Acta Crystallogr., Sect. A46 1990, 467-473.
(b) SHELXL-93: Sheldrick, G. M. SHELXL-93, Program for the
Refinement of Crystal Structures; University of Go¨ttingen:
Germany, 1993. (c) PLATON-92: Spek, A. L. PLATON-92,
Program for the Analysis of Molecular Geometry; University of
Utrecht: Utrecht, The Netherlands, 1992.
Su p p or tin g In for m a tion Ava ila ble: Tables of crystal
data, structure solution and refinement, atomic coordinates,
and anisotropic displacement parameters for (6aR,aR)- and
(6aR,aS)-14‚HCl; experimental, physical, and spectroscopic
data for (6aR,aR)- and (6aR,aS)-14‚HCl and (6aR,aR)- and
(6aR,aS)-15‚HCl; and experimental details for the pharmaco-
logical evaluation and the single-crystal X-ray diffraction. This
material is available free of charge via the Internet at http://
pubs.acs.org.
Refer en ces
(1) For interactions of 1 with DA receptors, see for example: (a)
Colpaert, F. C.; Van Bever, W. F.; Leysen, J . E. Apomorphine:
Chemistry, Pharmacology, Biochemistry. Int. Rev. Neurobiol.
1976, 19, 225-268. (b) Goldman, M. E.; Kebabian, J . W.
Aporphine Enantiomers. Interactions with D-1 and D-2 Dopam-
ine Receptors. Mol. Pharmacol. 1984, 25, 18-23.
(2) Cannon, J . G.; Raghupathi, R.; Moe, S. T.; J ohnson, A. K.; Long,
J . P. Preparation and Pharmacological Evaluation of Enanti-
omers of Certain Nonoxygenated Aporphines - (+)- and (-)-
Aporphine and (+)- and (-)-10-Methylaporphine. J . Med. Chem.
1993, 36, 1316-1318.
(3) Hedberg, M. H.; Linnanen, T.; J ansen, J . M.; Nordvall, G.;
Hjorth, S.; Unelius, L.; J ohansson, A. M. 11-Substituted (R)-
Aporphines: Synthesis, Pharmacology, and Modeling of D2A and
5-HT1A Receptor Interactions. J . Med. Chem. 1996, 39, 3503-
3513.
(4) Vanhoenacker, P.; Haegeman, G.; Leysen, J . E. 5-HT7 Recep-
tors: Current Knowledge and Future Prospects. Trends Pharm.
Sci. 2000, 21, 70-77.
(5) (a) Forbes, I. T.; Dabbs, S.; Duckworth, D. M.; J ennings, A. J .;
King, F. D.; Lovell, P. J .; Brown, A. M.; Collin, L.; Hagan, J . J .;
Middlemiss, D. N.; Riley, G. J .; Thomas, D. R.; Upton, N. (R)-
3,N-Dimethyl-N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]ben-
zenesulfonamide: The First Selective 5-HT7 Receptor Antago-
nist. J . Med. Chem. 1998, 41, 655-657. (b) Kikuchi, C.; Nagaso,
H.; Hiranuma, T.; Koyama, M. Tetrahydrobenzindoles: Selective
Antagonists of the 5-HT7 Receptor. J . Med. Chem. 1999, 42,
533-535. (c) Lovell, P. J .; Bromidge, S. M.; Dabbs, S.; Duck-
worth, D. M.; Forbes, I. T.; J ennings, A. J .; King, F. D.;
Middlemiss, D. N.; Rahman, S. K.; Saunders: D. V.; Collin, L.
L.; Hagan, J . J .; Riley, G. J .; Thomas, D. R. A Novel, Potent,
and Selective 5-HT7 Antagonist: (R)-3-(2-(2-(4-Methylpiperidin-
1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J . Med.
Chem. 2000, 43, 342-345. (d) Linnanen, T.; Brisander, M.;
Unelius, L.; Sundholm, G.; Hacksell, U.; J ohansson, A. M.
Derivatives of (R)-1,11-Methyleneaporphine: Synthesis, Struc-
ture, and Interactions with G-Protein Coupled Receptors. J . Med.
Chem. 2000, 43, 1339-1349.
(6) Atropisomers are defined as separable isomers resulting from
restricted rotation about a single bond. See: (a) Mislow, K. Intro-
duction to Stereochemistry; W. A. Benjamin: New York, 1965;
p 78. (b) Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic
Compounds; J ohn Wiley & Sons: New York, 1994; p 1193.
(7) (a) Remy, D. C.; Rittle, K. E.; Hunt, C. A.; Anderson, P. S.;
Arison, B. H.; Engelhardt, E. L.; Hirschmann, R.; Clineschmidt,
B. V.; Lotti, V. J .; Bunting, P. R.; Ballentine, R. J .; Papp, N. L.;
Flataker, L.; Witoslawski, J . J .; Stone, C. A. Synthesis and
Stereospecific Antipsychotic Activity of (-)-1-Cyclopropylmethyl-
4-(3-trifluoromethylthio-5H-dibenzo[a,d]cyclohepten-5-ylidene)-
piperidine. J . Med. Chem. 1977, 20, 1013-1019. (b) Randall, W.
C.; Anderson, P. S.; Cresson, E. L.; Hunt, C. A.; Lyon, T. F.;
Rittle, K. E.; Remy, D. C.; Springer, J . P.; Hirshfield, J . M.;
Hoogsteen, K.; Williams, M.; Risley, E. A.; Totaro, J . A. Syn-
thesis, Assignment of Absolute Configuration, and Receptor
Binding Studies Relevant to the Neuroleptic Activities of a Series
of Chiral 3-Substituted Cyproheptadine Atropisomers. J . Med.
Chem. 1979, 22, 1222-1230. (c) Casy, A. F.; Dewar, G. H. The
(12) The 1H NMR chemical shift of the aromatic methyl group in
epimers 13-15 could also be utilized for determination of the
relative axial stereochemistry. For derivatives (6aR,aS)-13,
(6aR,aS)-14, and (6aR,aS)-15 a consistent upfield shift of the
methyl protons was observed. This effect is most probably due
to the induced field of the aromatic C-ring system, which causes
the aromatic methyl group, positioned close in space to the
C-ring, to be shifted upfield.
(13) Moreover, this sterical interaction is also likely to be the cause
of an unusual deviation in the C11-C1′ bond. The carbon atom
C1′ in (6aR,aR)- and (6aR,aS)-14 is located 0.231(8) and 0.252(7)
Å, respectively, out of a least-squares plane containing C7a, C8,
C9, C10, C11, and C11a. In addition, the C11-C1′ bond deviates
out of the aromatic plane of the A-ring, the torsion angles τ3-
(C9-C10-C11-C1′) and τ4(C7a-C11a-C11-C1′) in (6aR,aR)-
14 being -172° and 169°, respectively, and in (6aR,aS)-14 they
are τ3 ) -171° and τ4 ) 168°. In (6aR,aS)-14, which has the
slightly larger distortion, the bulky methyl group is positioned
close to the aporphine skeleton, while (6aR,aR)-14 has a cyano
group in the equivalent position. This supports the idea of
sterical interactions being the main factors causing the described
changes in the solid-state conformations of these atropisomeric
(R)-aporphines. Minimization (MM3)17 of the two solid-state
conformations in their nonprotonated form resulted in conforma-
tions in which the deviation of the C11-C1′ bond is smaller and
the torsion angle between the A- and C-rings (τ2) is slightly
larger than in the solid-state conformations. Ab initio minimiza-
tions at the RHF/6-31G* level18 of the solid-state conformation
of (6aR,aR)- and (6aR,aS)-14 gave similar C11-C1′ bond and
torsion angles as found in the MM3 calculated conformations.
Hence, the larger deviations of the C11-C1′ bond and the
smaller τ2 values observed in the solid-state conformations might
be effects due to crystal packing.
(14) For stability of atropisomers, see for example: Eliel, E. L.; Wilen,
S. H. Stereochemisty of Organic Compounds; J ohn Wiley &
Sons: New York, 1994; pp 1119-1190.
(15) (a) Malmberg, A° .; J ackson, D. M.; Eriksson, A.; Mohell, N.
Unique Binding Characteristics of Antipsycotic Agents Interact-
ing with Human Dopamine D2a, D2b and D3 Receptors. Mol.
Pharmacol. 1993, 43, 749-754. (b) J ackson, D. M.; Mohell, N.;
Georgiev, J .; Bengtsson, A.; Larsson, L.-G.; Magnusson, O.; Ross,
S. B. Time-Course of Bromocriptine Induced Excitation in the
Rat: Behavioral and Biochemical Studies. Naunyn-Schmiede-
bergs Arch. Pharmacol. 1995, 351, 146-155.
(16) Linnanen, T.; Nordvall, G.; Mohell, N.; Leonova, I.; J ohansson,
A. M. Studies of Selective Serotonergic Derivatives of (R)-11-
Phenylaporphine. Manuscript in preparation.
(17) MacroModel, version 5.5. See: Mohamadi, F.; Richards, N. G.
J .; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang,
G.; Hendrickson, T.; Still, W. C. Macromodel - An Integrated
Software System For Modeling Organic and Bioorganic Mol-
ecules Using Molecular Mechanics. J . Comput. Chem. 1990, 11,
440-467.
(18) SPARTAN 5.0.3; Wavefunction, Inc., 18401 Von Karman Ave.,
J M0108505