10.1002/anie.201900907
Angewandte Chemie International Edition
COMMUNICATION
2009, 74, 2780.
To further demonstrate the power of our catalytic system,
we performed gram-scale reactions with styryl- (S12) and
alkynyl-substituted (S22) quinolines (Scheme 3). We
discovered that running these hydrogenations at 25 °C did not
compromise the enantioselectivities substantially. In addition,
by using only 0.2 mol % of catalyst 5a[19] and extending the
reaction time to 48 h, we obtained P12 and P22 in high yields
with excellent ee values. Notably, the turnover number of 460,
obtained in the hydrogenation reaction of S12, represents the
highest turnover number so far for asymmetric hydrogenation
reactions promoted by a chiral borane catalyst. We reason
that the rigidity of the bicyclic scaffold and the steric bulk that
shields boron centers from attack or coordination by
nucleophiles (e.g., tetrahydroquinolines) might have
contributed to the enhanced stability and activity of these
catalysts.
[4] For selected studies using ruthenium catalysts, see: a) H.-F. Zhou, Z.-W. Li,
Z.-J. Wang, T.-L. Wang, L.-J. Xu, Y.-M. He, Q.-H. Fan, J. Pan, L.-Q. Gu, A.
S. C. Chan, Angew. Chem. Int. Ed. 2008, 47, 8464; Angew. Chem. 2008,
120, 8592; b) T.-L. Wang, L. G. Zhuo, Z.-W. Li, F. Chen, Z.-Y. Ding, Y.-M.
He, Q.-H. Fan, J.-F. Xiang, Z.-X. Yu, A. S. C. Chan, J. Am. Chem. Soc. 2011,
133, 9878; c) Q.-A. Chen, K. Gao, Y. Duan, Z.-S. Ye, L. Shi, Y. Yang, Y.-G.
Zhou, J. Am. Chem. Soc. 2012, 134, 2442; d) W. Ma, J. Zhang, C. Xu, F.
Chen, Y.-M. He, Q.-H. Fan, Angew. Chem. Int. Ed. 2016, 55, 12891; Angew.
Chem. 2016, 128, 13083.
[5] For selected reports using other metals as well as enantioselective transfer
hydrogenations, see: a) M. Rueping, A. P. Antonchick, T. Theissmann,
Angew. Chem. Int. Ed. 2006, 45, 3683; Angew. Chem. 2006, 118, 3765; b)
C. Wang, C. Li, X. Wu, A. Pettman, J. Xiao, Angew. Chem. Int. Ed. 2009, 48,
6524; Angew. Chem. 2009, 121, 6646; c) X.-F. Tu, L.-Z. Gong, Angew. Chem.
Int. Ed. 2012, 51, 11346; Angew. Chem. 2012, 124, 11508; d) X.-F. Cai, W.-
X. Huang, Z.-P. Chen, Y.-G. Zhou, Chem. Commun. 2014, 50, 9588; e) J.
Wen, R. Tan, S. Liu, Q. Zhao, X. Zhang, Chem. Sci. 2016, 7, 3047.
[6] For recent reviews, see: a) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed.
2015, 54, 6400; Angew. Chem. 2015, 127, 6498; b) D. W. Stephan, Science
2016, 354, aaf7229; c) J. Lam, K. M. Szkop, E. Mosaferi, D. W. Stephan,
Chem. Soc. Rev. 2019, DOI:10.1039/C8CS00277K; d) M. Oestreich, J.
Hermeke, J. Mohr, Chem. Soc. Rev. 2015, 44, 2202; e) W. Meng, X. Feng,
H. Du, Acc. Chem. Res. 2018, 51, 191; f) J. Paradies, Coord. Chem. Rev.
2019, 380, 170; g) J. R. Lawson, R. L. Melen, Inorg. Chem. 2017, 56, 8627.
[7] For selected reports, see: a) S. J. Geier, P. A. Chase, D. W. Stephan, Chem.
Commun. 2010, 46, 4884; b) G. Erős, K. Nagy, H. Mehdi, I. Pápai, P. Nagy,
P. Király, G. Tárkányi, T. Soós, Chem. Eur. J. 2012, 18, 574; c) T. Mahdi, J.
N. del Castillo, D. W. Stephan, Organometallics 2013, 32, 1971; d) Y. Liu, H.
Du, J. Am. Chem. Soc. 2013, 135, 12968; e) P. Eisenberger, B. P. Bestvater,
E. C. Keske, C. M. Crudden, Angew. Chem. Int. Ed. 2015, 54, 2467; Angew.
Chem. 2015, 127, 2497; f) W. Wang, X. Feng, H. Du, Org. Biomol. Chem.
2016, 14, 6683; g) W. Wang, W. Meng, H. Du, Dalton Trans. 2016, 45, 5945;
h) X. Liu, T. Liu, W. Meng, H. Du, Org. Lett. 2018, 20, 5653.
N
Ph
N
Ph
H
5a (0.2 mol %)
S12
P12
, 92% yield, 97% ee (TON = 460)
(5 mmol, 1.16 g)
H2
+
PhCF3, 25 °C, 48 h
50 bar
N
N
H
Ph
S22 (5 mmol, 1.15 g)
Ph
P22, 69% yield, 90% ee (TON = 345)
Scheme 3. Gram-scale reactions with 0.2 mol % catalyst
In conclusion, we have synthesized a new class of spiro
bicyclic bisborane catalysts that exhibit excellent activities and
selectivities in asymmetric hydrogenation reactions of 2-
substituted quinolines. The unprecedented broad functional
group tolerance observed in these hydrogenation reactions
demonstrates the unique advantages of these catalysts over
transition metals and other borane catalysts. Our group is
currently investigating the origin of this excellent
chemoselectivity, as well as the potential applications of these
catalysts in other enantioselective transformations.
[8] V. Sumerin, K. Chernichenko, M. Nieger, M. Leskelä, B. Rieger, T. Repo,
Adv. Synth. Catal. 2011, 353, 2093.
[9] a) Z. Zhang, H. Du, Org. Lett. 2015, 17, 2816; b) Z. Zhang, H. Du, Org. Lett.
2015, 17, 6266; c) Z. Zhang, H. Du, Angew. Chem. Int. Ed. 2015, 54, 623;
Angew. Chem. 2015, 127, 633.
[10] C. Han, E. Zhang, X. Feng, S. Wang, H. Du, Tetrahedron Lett. 2018, 59,
1400.
Acknowledgements
[11] X.-S. Tu, N.-N. Zeng, R.-Y. Li, Y.-Q. Zhao, D.-Z. Xie, Q. Peng, X.-C. Wang,
Angew. Chem. Int. Ed. 2018, 57, 15096; Angew. Chem. 2018, 130, 15316.
[12] J. A. Nieman, B. A. Keay, Synth. Commun. 1999, 29, 3829.
[13] N. Harada, N. Ochiai, K. Takada, H. Uda, J. Chem. Soc., Chem. Commun.
1977, 495.
We thank financial support from the National Natural Science
Foundation of China (21602114 and 21871147), the Natural
Science Foundation of Tianjin (16JCYBJC42500), the 1000-
Talent Youth Program, and the Fundamental Research Funds
for Central Universities. We thank Professor Qi-Lin Zhou and
Fang Lan at Nankai University for helpful discussions.
[14] Because the spiro bicyclic structure forms via a reversible ring-closure
reaction, the erosion of enantiomeric excesses may have occurred via a
sequential ring-opening and reclosing process.
[15] For Piers borane, see: a) D. J. Parks, R. E. von H. Spence, W. E. Piers,
Angew. Chem. Int. Ed. Engl. 1995, 34, 809; Angew. Chem. 1995, 107, 895;
b) D. J. Parks, W. E. Piers, G. P. A. Yap, Organometallics 1998, 17, 5492;
For pioneering studies of using this hydroboration for preparation of chiral
catalysts, see: c) D. Chen, J. Klankermayer, Chem. Commun. 2008, 2130; d)
D. Chen, Y. Wang, J. Klankermayer, Angew. Chem. Int. Ed. 2010, 49, 9475;
Angew. Chem. 2010, 122, 9665.
Keywords: boron • asymmetric catalysis • hydrogenation •
heterocycles • homogeneous catalysis
[1] a) E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257;
b) V. Sridharan, P. A. Suryavanshi, J. C. Menéndez, Chem. Rev. 2011, 111,
7157.
[16] CCDC 1872176 and 1872179 contain the supplementary crystallographic
data for this paper. These data are provided free of charge by The Cambridge
Crystallographic Data Centre.
[17] For in situ generation of catalyst 5a4F, diene 4a was allowed to react with
H(p-C6F4H)2 in toluene at 80 °C for 10 min. The structure of 5a4F was
confirmed by a crystal structure of its adduct with isoquinoline (CCDC
1872178). For preparation of H(p-C6F4H)2, see: D. Winkelhaus, B. Neumann,
H.-G. Stammler, N. W. Mitzel, Dalton Trans. 2012, 41, 8609.
[2] For selected reviews, see: a) D.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou,
Chem. Rev. 2012, 112, 2557; b) Y.-M. He, F.-T. Song, Q.-H. Fan, Top. Curr.
Chem. 2013, 343, 145.
[3] For selected studies using iridium catalysts, see: a) W.-B. Wang, S.-M. Lu,
P.-Y. Yang, X.-W. Han, Y.-G. Zhou, J. Am. Chem. Soc. 2003, 125, 10536; b)
S.-M. Lu, Y.-Q. Wang, X.-W. Han, Y.-G. Zhou, Angew. Chem. Int. Ed. 2006,
45, 2260; Angew. Chem. 2006, 118, 2318; c) L.-J. Xu, K. H. Lam, J. X. Ji, J.
Wu, Q.-H. Fan, W.-H. Lo, A. S. C. Chan, Chem. Commun. 2005, 1390; d) L.
Q. Qiu, F. Y. Kwong, J. Wu, W. H. Lam, S. Chan, W.-Y. Yu, Y.-M. Li, R. W.
Guo, Z. Zhou, A. S. C. Chan, J. Am. Chem. Soc. 2006, 128, 5955; e) D.-W.
Wang, X.-B. Wang, D.-S. Wang, S.-M. Lu, Y.-G. Zhou, Y.-X. Li, J. Org. Chem.
[18] X.-F. Cai, M.-W. Chen, Z.-S. Ye, R.-N. Guo, L. Shi, Y.-Q. Li, Y.-G. Zhou,
Chem. Asian J. 2013, 8, 1381.
[19] For these reactions, catalysts 5a and 5a4F gave similar enantioselectivities,
but 5a gave higher turnover numbers than 5a4F
.
This article is protected by copyright. All rights reserved.