SYNTHESIS OF THE UNSATURATED DIAMINES BY THE STEVENS REARRANGEMENT
1799
(CH3)2NH, (CH2O)n
(C2H5)2NCH2C
CCH2N(CH3)2
H
(C2H5)2NCH2C CH
FeCl3, dioxane
I
R2
C
CR1=CH2
CH2CR1=CHR2
HlgCH2CR1=CHR2
Et2O
KOH
(CH3)2N
Hlg
(CH3)2N
C
H
C
CCH2N(C2H5)2
benzene
CH2C
CCH2N(C2H5)2
IIа_IId
IIIа_IIId
R1 = R2 = H (а), R1 = CH3, R2 = H (b); R1 = H, R2 = CH3 (c); R1 = H, R2 = C6H5 (d); Hlg = Br (a–c), Cl (b).
According to the 1H NMR spectra, compounds IIIc
and IIId exist as two diastereomers in a ratio of 25:75
and 10:90, respectively.
a Varian Mercury-300 spectrometer [300.075 MHz
(1H), 75.46 MHz (13C] in DMSO-d6–CCl4 (1:3) at
303 K relative to internal TMS.
EXPERIMENTAL
The GLC analysis was performed on a LKhM-80
instrument [ramp 50–220°C at a rate 16 deg min–1,
column 2000×3 mm, 10% Apiezon-L on Inerton-AW
(0.2–0.25 mm), the carrier gas helium, flow rate
The IR spectra were recorded on a Specord IR-75
instrument from the samples as a slurry in mineral oil
or as a thin layer. The NMR spectra were recorded on
Table 2. Yields, physicochemical characteristics, and elemental analysis data of compounds I, IIIa–IIId
Found, %
H
Calculated, %
H
Comp. Yield,
bp, °С
(mm Hg)
nD20
Formula
no.
%
C
N
C
N
60
41
55
45
51
86–87 (7)
1.4540
1.4670
1.4680
1.4730
1.5260
71.57
75.28
75.36
75.91
80.55
11.81
11.51
11.26
11.89
9.38
16.60
13.61
12.54
12.78
9.98
C10H20N2
C13H24N2
C14H26N2
C14H26N2
C19H28N2
71.43
75.00
75.67
75.67
80.28
11.90
11.54
11.71
11.71
9.86
16.67
13.46
12.62
12.62
9.86
I
130–131 (24)
128–129 (13)
130–132 (18)
142–144 (2)
IIIа
IIIb
IIIc
IIId
Table 3. IR, 1H, and 13C NMR spectral parameters of compounds I, IIIa–IIId
Comp.
no.
ν, cm–1
δ, ppm (J, Hz)
2240 (C≡C)
δН: 1.02 t (6H, CH2CH3, 3J 7.1), 2.19 s (6H, NCH3), 2.46 q (4H, NCH2CH3, 3J 7.1), 3.17 t (2H, CH2NMe2,
5J 2.0), 3.35 t (2H, CH2NEt2, 5J 2.0); δС: 12.2 (CH2CH3), 43.2 (C, NCH3), 46.4 (NCH2CH3), 39.9 (NCH2),
47.2 (NCH2), 78.7 and 78.9 (C≡C)
I
3
3
890, 920, 1650, δН: 1.01 t (6H, CH2CH3, J 7.2), 2.15 s (6H, NCH3), 2.27 m (2H, CH2), 2.46 q (4H, NCH2CH3, J 7.2),
IIIа
IIIb
IIIc
IIId
3
5
5
3
2
3015, 3085 (C=C); 3.29 d.d.t (1H, CH, J 8.0, 7.2, J 1.8), 3.37 d (2H, NCH2, J 1.8), 4.98 d.d.t (1Н, =CH2, J 10.2, J 2.0,
2250 (C≡C)
4J 1.2), 5.05 d.d.t (1H, =CH2, 3J 17.2, 2J 2.0, 4J 1.5), 5.80 d.d.t (1H, =CH, 3J 17.2, 10.2, 6.8)
915, 975, 1640, δН: 1.01 t (6H, CH2CH3, 3J 7.1), 1.74 t (3H, CH3, 4J 1.2), 2.16 s (6H, NCH3), 2.19–2.27 m (2H, CH2), 2.45
3015, 3085 (C=C); q (4H, NCH2CH3, 3J 7.1), 3.36 d (2H, NCH2, 5J 1.8), 3.43 d.d.t (1Н, CH, 3J 8.3, 7.0, 5J 1.8), 4.72 q (2Н,
2245 (C≡C)
=CH2, 4J 1.2)
3
3
920, 1640, 3015, δН: 1.03 t (6Н, CH2CH3, J 7.1), 1.06 d (3Н, CH3CH, J 6.7), 2.14 s (6Н, NCH3), 2.19–3.32 m (1H,
3090 (C=C); 2240 CHCH3), 2.48 q (4Н, NCH2CH3, 3J 7.1), 2.94 d.t (3Н, NCH, 3J 10.1, 5J 1.8), 3.37 d (2Н, CH2NEt2, 5J 1.8),
(C≡C)
4.87–5.05 m (2Н, CH2), 5.78 d.d.d (1Н, =CH, 3J 17.2, 10.4, 7.5)
920, 1640, 3025, 3085 δН: 1.02 t (6H, CH2CH3, 3J 7.1), 2.21 s (6H, NCH3), 2.50 q (4H, NCH2CH3, 3J 7.1), 3.19 d (2Н, CH2NEt2,
(C=C); 720, 765, 1500, 5J 2.0), 3.34 d.d.t (1H, CH, 3J 11.0, 7.6, 4J 1.0), 3.59 d.t (1H, NCH, 3J 11.0, 5J 2.0), 4.87 d.d.d (1H, =CH2,
1600, 3020, 3065 3J 18.0, J 1.8, J 1.0), 4.95 d.d.d (1H, =CH2, J 10.3, J 1.8, J 1.0), 6.08 d.d.d (1Н, =CH, J 18.0, 10.3,
2
4
3
2
4
3
(C6H5); 2235 (C≡C) 7.6), 7.11–7.34 m (5Н, C6H5)
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 82 No. 11 2012