10.1002/anie.201907962
Angewandte Chemie International Edition
COMMUNICATION
[33] A. McCarroll, J. C. Walton, A. McCarroll, R. Nziengui, B. Carboni, Chem.
Commun. 1997, 2075–2076.
Acknowledgements
[34] J. C. Walton, A. J. McCarroll, Q. Chen, B. Carboni, R. Nziengui, J. Am.
Chem. Soc. 2000, 122, 5455–5463.
The
Swiss
National
Science
Foundation
(Project
200020_172621) and the University of Bern are gratefully
acknowledged for financial support.
[35] D. P. Curran, in Free Radicals in Synthesis and Biology (Ed.: F. Minisci),
Springer, Dordrecht, 1989, pp. 37–51.
[36] J. Byers, in Radicals in Organic Synthesis, Wiley-Blackwell, 2008, pp.
72–89.
Keywords: radical reaction • organoboron • cyclopropanation •
alkenes • 1-borylated radical • iodine atom transfer • ATRA •
boronate complexes.
[37] M. S. Kharasch, E. V. Jensen, W. H. Urry, Science 1945, 102, 128–128.
[38] M. S. Kharasch, P. S. Skell, P. Fisher, J. Am. Chem. Soc. 1948, 70,
1055–1059.
[39] D. P. Curran, C. T. Chang, J. Org. Chem. 1989, 54, 3140–3157.
[40] D. P. Curran, M. H. Chen, E. Spletzer, C. M. Seong, C. T. Chang, J. Am.
Chem. Soc. 1989, 111, 8872–8878.
[1]
[2]
C. Sandford, V. K. Aggarwal, Chem. Commun. 2017, 53, 5481–5494.
T. Chinnusamy, K. Feeney, C. G. Watson, D. Leonori, V. K. Aggarwal, in
Comprehensive Organic Synthesis II (Ed.: P. Knochel), Elsevier,
Amsterdam, 2014, pp. 692–718.
[41] H. Zipse, in Radicals in Synthesis I (Ed.: A. Gansäuer), Springer, Berlin,
2006, pp. 163–189.
[3]
[4]
[5]
[6]
R. Armstrong, V. Aggarwal, Synthesis 2017, 49, 3323–3336.
A. J. J. Lennox, G. C. Lloyd-Jones, Chem. Soc. Rev. 2013, 43, 412–443.
C. Valente, M. G. Organ, in Boronic Acids, Wiley, 2011, pp. 213–262.
A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat.
Chem. 2014, 6, 584–589.
[42] For a related study that appear after submitting our mansucript, see: Q.
Huang, J. Michalland, S. Z. Zard, Angew. Chem. Int. Ed. 2019, DOI
10.1002/anie.201906497.
[43] H. Lopez-Ruiz, S. Z. Zard, Chem. Commun. 2001, 2618–2619.
[44] M. R. Heinrich, L. A. Sharp, S. Z. Zard, Chem. Commun. 2005, 3077.
[45] B. Quiclet-Sire, S. Z. Zard, J. Am. Chem. Soc. 2015, 137, 6762–6765.
[46] N. Guennouni, F. Lhermitte, S. Cochard, B. Carboni, Tetrahedron 1995,
51, 6999–7018.
[7]
[8]
C. Ollivier, P. Renaud, Chem. Rev. 2001, 101, 3415–3434.
P. Renaud, A. Beauseigneur, A. Brecht-Forster, B. Becattini, V.
Darmency, S. Kandhasamy, F. Montermini, C. Ollivier, P. Panchaud, D.
Pozzi, et al., Pure Appl. Chem. 2007, 79, 223–233.
[47] R. A. Batey, B. Pedram, K. Yong, G. Baquer, Tetrahedron Lett. 1996, 37,
6847–6850.
[9]
P. Renaud, in Encyclopedia of Radicals in Chemistry, Biology and
Materials (Eds.: C. Chatgilialoglu, A. Studer), Wiley, Chichester, 2012.
[48] R. A. Batey, D. V. Smil, Angew. Chem. Int. Ed. 1999, 38, 1798–1800.
[49] R. A. Batey, D. V. Smil, Tetrahedron Lett. 1999, 40, 9183–9187.
[50] K. Takai, N. Shinomiya, M. Ohta, Synlett 1998, 1998, 253–254.
[51] T. C. Atack, S. P. Cook, J. Am. Chem. Soc. 2016, 138, 6139–6142.
[52] D. Kurandina, M. Parasram, V. Gevorgyan, Angew. Chem. Int. Ed. 2017,
56, 14212–14216.
[10] G. Yan, M. Yang, X. Wu, Org. Biomol. Chem. 2013, 11, 7999–8008.
[11] G. Duret, R. Quinlan, P. Bisseret, N. Blanchard, Chem. Sci. 2015, 6,
5366–5382.
[12] A. Pelter, K. Smith, H. C. Brown, Borane Reagents, Academic Press,
Londonꢀ; San Diego, 1988.
[13] S. J. Geier, C. M. Vogels, S. A. Westcott, in Boron Reagents in Synthesis,
American Chemical Society, 2016, pp. 209–225.
[53] T. den Hartog, J. M. S. Toro, P. Chen, Org. Lett. 2014, 16, 1100–1103.
[54] J. Schmidt, J. Choi, A. T. Liu, M. Slusarczyk, G. C. Fu, Science 2016,
354, 1265–1269.
[14] D. G. Hall, in Boronic Acids: Preparation and Applications in Organic
Synthesis and Medicine (Ed.: D.G. Hall), Wiley, 2011, pp. 1–133.
[15] T. Ishiyama, N. Miyaura, in Boronic Acids, Wiley, 2006, pp. 101–121.
[16] G. Yan, D. Huang, X. Wu, Adv. Synth. Catal. 2018, 360, 1040–1053.
[17] D. S. Matteson, J. Org. Chem. 2013, 78, 10009–10023.
[18] D. S. Matteson, in Boron Reagents in Synthesis (Ed.: A. Coca), American
Chemical Society, Washington, 2016, pp. 173–208.
[55] S.-Z. Sun, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 3622–3625.
[56] Z. He, P. Trinchera, S. Adachi, J. D. St. Denis, A. K. Yudin, Angew. Chem.
Int. Ed. 2012, 51, 11092–11096.
[57] D. S. Matteson, J. Am. Chem. Soc. 1960, 82, 4228–4233.
[58] D. S. Matteson, A. H. Soloway, D. W. Tomlinson, J. D. Campbell, G. A.
Nixon, J. Med. Chem. 1964, 7, 640–643.
[19] C. G. Watson, P. J. Unsworth, D. Leonori, V. K. Aggarwal, in Lithium
Compounds in Organic Synthesis, Wiley-VCH, Weinheim, 2014, pp.
397–422.
[59] S. A. Green, J. L. M. Matos, A. Yagi, R. A. Shenvi, J. Am. Chem. Soc.
2016, 138, 12779–12782.
[60] A. Noble, R. S. Mega, D. Pflästerer, E. L. Myers, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2018, 57, 2155–2159.
[20] G. Povie, S. R. Suravarapu, M. P. Bircher, M. M. Mojzes, S. Rieder, P.
Renaud, Science Adv. 2018, 4, eaat6031.
[61] C. Shu, R. S. Mega, B. J. Andreassen, A. Noble, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2018, 57, 15430–15434.
[21] D. Meyer, P. Renaud, Angew. Chem. Int. Ed. 2017, 56, 10858–10861.
[22] D. Meyer, E. Vin, B. Wyler, G. Lapointe, P. Renaud, Synlett 2015, 27,
745–748.
[62] M. Kischkewitz, K. Okamoto, C. Mück-Lichtenfeld, A. Studer, Science
2017, 355, 936–938.
[23] G. Povie, A. T. Tran, D. Bonnaffé, J. Habegger, Z. Y. Hu, C. Le Narvor,
P. Renaud, Angew. Chem. Int. Ed. 2014, 53, 3894–3898.
[24] Cao Lidong, Weidner Karin, Renaud Philippe, Adv. Synth. Catal. 2012,
354, 2070–2070.
[63] M. Silvi, C. Sandford, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139,
5736–5739.
[64] N. D. C. Tappin, M. Gnägi-Lux, P. Renaud, Chem. Eur. J. 2018, 24,
11498–11502.
[25] Cao Lidong, Weidner Karin, Renaud Philippe, Adv. Synth. Catal. 2011,
353, 3467–3472.
[65] M. F. Hawthorne, J. A. Dupont, J. Am. Chem. Soc. 1958, 80, 5830–5832.
[66] M. F. Hawthorne, J. Am. Chem. Soc. 1960, 82, 1886–1888.
[67] H. C. Brown, S. P. Rhodes, J. Am. Chem. Soc. 1969, 91, 2149–2150.
[68] H. C. Brown, S. P. Rhodes, J. Am. Chem. Soc. 1969, 91, 4306–4307.
[69] H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003,
103, 977–1050.
[26] K. Weidner, A. Giroult, P. Panchaud, P. Renaud, J. Am. Chem. Soc.
2010, 132, 17511–17515.
[27] A. Beauseigneur, C. Ericsson, P. Renaud, K. Schenk, Org. Lett. 2009,
11, 3778–3781.
[28] A. P. Schaffner, K. Sarkunam, P. Renaud, Helv. Chim. Acta 2006, 89,
2450–2461.
[70] C. Ollivier, T. Bark, P. Renaud, Synthesis 2000, 1598–1602.
[71] H. L. Goering, S. L. Trenbeath, J. Am. Chem. Soc. 1976, 98, 5016–5017.
[72] M. E. Gurskii, T. V. Potapova, K. L. Cherkasova, Yu. N. Bubnov, Russ.
Chem. Bull. 1988, 37, 334–338.
[29] P. Panchaud, P. Renaud, CHIMIA 2004, 58, 232–233.
[30] P. Panchaud, P. Renaud, J. Org. Chem. 2004, 69, 3205–3207.
[31] P. Renaud, P. Renaud, C. Ollivier, P. Panchaud, Angew. Chem. Int. Ed.
2002, 41, 3460–3462.
[73] C. D. Roy, H. C. Brown, Monatsh. Chem. 2007, 138, 879–887.
[74] C. D. Roy, H. C. Brown, J. Organomet. Chem. 2007, 692, 784–790.
[32] C. Ollivier, P. Renaud, Angew. Chem. Int. Ed. Engl. 2000, 39, 925–928.
This article is protected by copyright. All rights reserved.