Welcome to LookChem.com Sign In|Join Free

CAS

  • or

502-65-8 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 502-65-8 Structure
  • Basic information

    1. Product Name: Lycopene
    2. Synonyms: LYCOSOURCE;LYCOPENE;JARCOPENE(TM);4,4-CAROTENE;2,6,10,14,19,23,27,31-OCTAMETHYL-DOTRIACONTA-2,6,8,10,12,14,16,18,20,22,24,26,30-TRIDECAENE;PSI,PSI-CAROTENE;Y,Y-CAROTENE;E 160d
    3. CAS NO:502-65-8
    4. Molecular Formula: C40H56
    5. Molecular Weight: 536.87
    6. EINECS: 207-949-1
    7. Product Categories: Carotenoids;All Aliphatics;Natural Plant Extract;Aliphatics;Nutritional Ingredients;Intermediates & Fine Chemicals;Pharmaceuticals;Plant extract;from Blakeslea Trispora;Plant extracts;chemical reagent;pharmaceutical intermediate;phytochemical;reference standards from Chinese medicinal herbs (TCM).;standardized herbal extract;Inhibitors
    8. Mol File: 502-65-8.mol
    9. Article Data: 41
  • Chemical Properties

    1. Melting Point: 172-173°C
    2. Boiling Point: 644.94°C (rough estimate)
    3. Flash Point: 350.7 °C
    4. Appearance: Pink Powder
    5. Density: 0.9380 (estimate)
    6. Vapor Pressure: 1.33E-16mmHg at 25°C
    7. Refractive Index: 1.5630 (estimate)
    8. Storage Temp.: −70°C
    9. Solubility: Benzene (Slightly), Chloroform (Sparingly), Ethyl Acetate (Very Slightly), Metha
    10. Stability: Heat sensitive - store at -70 C. Combustible. Incompatible with strong oxidizing agents.
    11. CAS DataBase Reference: Lycopene(CAS DataBase Reference)
    12. NIST Chemistry Reference: Lycopene(502-65-8)
    13. EPA Substance Registry System: Lycopene(502-65-8)
  • Safety Data

    1. Hazard Codes: Xi
    2. Statements: 36/37/38
    3. Safety Statements: 26-36/37/39
    4. WGK Germany: 3
    5. RTECS:
    6. F: 8-10-23
    7. HazardClass: N/A
    8. PackingGroup: N/A
    9. Hazardous Substances Data: 502-65-8(Hazardous Substances Data)

502-65-8 Usage

Description

Lycopene is a naturally occurring red pigment, which belongs to the family of carotenoids. It is found in tomatoes, watermelon, and papaya and possesses antioxidant properties. Lycopene is a symmetrical tetraterpene assembled from 8 isoprene units, containing 11 conjugated and 2 non-conjugated double bonds between carbon atoms. It is a white to pale-yellow solid with a balsam oriental aroma and is freely soluble in ethyl acetate and n-hexane, partially soluble in ethanol and acetone, and insoluble in water.

Uses

Used in Food Industry:
Lycopene is used as a natural colorant for various food products, providing similar color shades, ranging from yellow to red, as do the natural and synthetic lycopenes. It is used in baked goods, breakfast cereals, dairy products, frozen dairy desserts, dairy product analogues, spreads, bottled water, carbonated beverages, fruit and vegetable juices, soybean beverages, candy, soups, salad dressings, and other foods and beverages.
Lycopene is also used as a food/dietary supplement in products where the presence of lycopene provides a specific value, such as antioxidant or other claimed health benefits.
Used in Pharmaceutical and Research Applications:
Lycopene has been used in high-performance liquid chromatography (HPLC) to determine its concentration in liver, kidney, and lung tissue. It has also been used to induce urokinase plasminogen activator receptor (uPAR) in a prostate cancer cell line and in Raman chemical imaging systems to detect and visualize its internal distribution.
Lycopene has been studied for its potential to prevent carcinogenesis, cardiovascular diseases, and aging due to its antioxidant properties and its strong correlation with the antioxidant capacity of tomatoes.

Production Methods

Lycopene extract from tomato is produced from a tomato variety with high lycopene content, within the range of 150 to 250 mg/kg. This particular variety is not generally marketed for direct consumption, but is used primarily in the production of this lycopene extract. The extract is produced by crushing tomatoes into crude tomato juice that is then separated into serum and pulp. The tomato pulp is then extracted with ethyl acetate. The final product is obtained after solvent removal by evaporation under vacuum at 40-60°C.

Biological Activity

Lycopene may act as an inhibitor of tumor cells. In one study, lycopene was shown to inhibit PDGF-BB-induced signalling and cell migration in human cultured skin fibroblasts (Wu et al., 2007). Trapping of PDGF by lycopene compromised melanoma-induced fibroblast migration and attenuated signalling transduction in fibroblasts (Wu et al., 2007). In functional studies, lycopene inhibited melanoma-induced fibroblast migration in a noncontact coculture system and attenuated signalling in fibroblasts simulated by melanoma-derived conditioned medium (Chiang et al., 2007).

Biochem/physiol Actions

Antioxidant micronutrient of tomatoes associated with decreased risk for cancer and cardiovascular disease. Enhances gap juction communication between cells via upregulation of connexin 43 and reduces proliferation of cancer cells in culture. Inhibits cholesterol synthesis and enhances low-density lipoprotein degradation.

Mechanism of action

Lycopene is a red carotenoid compound found in pink grapefruit, papaya, wolfberry, goji, and tomatoes Dietary supplementation with tomato-based products appears to lower biomarkers of oxidative stress and carcinogenesis. Limited available evidence from small human intervention studies indicate that lycopene supplementation for 10–12 weeks may decrease UV-induced erythema. Although the bioavailability of lycopene in raw tomatoes is low due to tight binding with indigestible fiber, lycopene can be released from the food matrix through heating and food processing. The effect of topical lycopene is not well characterized. An in vivo study using SKH-1 hairless mice found that topical lycopene reduced the activity of ornithine decarboxylase (ODC) and myeloperoxidase (MPO), enzymes that have been implicated in the carcinogenic and acute inflammatory effect of UVB irradiation.

Mechanism of action

The biological activities of carotenoids such as βcarotene are related in general to their ability to form vitamin A within the body.Since lycopene lacks the β-ionone ring structure, it cannot form vitamin A.Its biological effects in humans have therefore been attributed to mechanisms other than vitamin A. Two major hypotheses have been proposed to explain the anticarcinogenic and antiatherogenic activities of lycopene: nonoxidative and oxidative mechanisms. Among the nonoxidative mechanisms, the anticarcinogenic effects of lycopene have been suggested to be due to regulation of gap-junction communication in mouse embryo fibroblast cells.Lycopene is hypothesized to suppress carcinogen-induced phosphorylation of regulatory proteins such as p53 and Rb antioncogenes and stop cell division at the G0–G1 cell cycle phase.Astorg and colleagues proposed that lycopene-induced modulation of the liver metabolizing enzyme, cytochrome P4502E1, was the underlying mechanism of protection against carcinogen-induced preneoplastic lesions in the rat liver. Preliminary in vitro evidence also indicates that lycopene reduces cellular proliferation induced by insulin-like growth factors, which are potent mitogens, in various cancer cell lines.Regulation of intrathymic T-cell differentiation (immunomodulation) was suggested to be the mechanism for suppression of mammary tumour growth by lycopene treatments in SHN retired mice.Lycopene also has been shown to act as a hypocholesterolemic agent by inhibiting HMG–CoA (3-hydroxy-3-methylglutaryl–coenzyme A) reductase. Lycopene has been hypothesized to prevent carcinogenesis and atherogenesis by protecting critical cellular biomolecules, including lipids, lipoproteins, proteins and DNA.In healthy human subjects, lycopene- or tomatofree diets resulted in loss of lycopene and increased lipid oxidation,whereas dietary supplementation with lycopene for 1 week increased serum lycopene levels and reduced endogenous levels of oxidation of lipids, proteins, lipoproteins and DNA.Patients with prostate cancer were found to have low levels of lycopene and high levels of oxidation of serum lipids and proteins.

Anticancer Research

Lycopene is a naturally occurring chemical that manifests as a red pigment contained in common foods such as tomatoes, pink grapefruits, guava, and watermelon (Giovannucci 1999). This is a very strong antioxidant that has been found to prevent and even reverse the progression of prostate cancer, as well as treating benign prostatic hyperplasia. In a recent study, 30 mg a day of lycopene showed curative results in prostate cancer. For best results, supplements are recommended alongside eating and drinking plenty of lycopene-containing food and juices (Jatoi et al. 2007). Earlier research showed that taking a specific combination of lycopene, selenium, and saw palmetto by mouth for 8 weeks reduced pain in men with prostate swelling and pelvic pain more significantly than saw palmetto alone (Feifer et al. 2002).Lycopene shows anticancer activity against prostate, endometrial, breast, and colon carcinomas. It inhibits human cancer cell proliferation by activation of cancer-preventive enzymes like phase II detoxification enzymes, by suppression of insulin-like growth factor-I-stimulated growth (Wang et al. 2012). It also activates antioxidant enzymes like GST, GSH, and GPx and protects from oxidative stress caused by carcinogens. It alters PI3K/AKT pathway and ERK and Bcl-2 signaling in pancreatic and gastric carcinoma cells, respectively (Singh et al. 2016b).

Purification Methods

Crystallise lycopene from CS2/MeOH, diethyl ether/pet ether, or acetone/pet ether. Also purify it by column chromatography on deactivated alumina, CaCO3, calcium hydroxide or magnesia. It is oxygen sensitive and is stored in the dark, in an inert atmosphere. Also purified like -Carotene. [Beilstein 1 III 1076, 1 IV 1165.]

Check Digit Verification of cas no

The CAS Registry Mumber 502-65-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,0 and 2 respectively; the second part has 2 digits, 6 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 502-65:
(5*5)+(4*0)+(3*2)+(2*6)+(1*5)=48
48 % 10 = 8
So 502-65-8 is a valid CAS Registry Number.
InChI:InChI=1/C40H56/c1-33(2)19-13-23-37(7)27-17-31-39(9)29-15-25-35(5)21-11-12-22-36(6)26-16-30-40(10)32-18-28-38(8)24-14-20-34(3)4/h11-12,15-22,25-32H,13-14,23-24H2,1-10H3/b12-11+,25-15+,26-16+,31-17+,32-18+,35-21-,36-22+,37-27-,38-28-,39-29-,40-30+

502-65-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma-Aldrich

  • (75051)  Lycopene  analytical standard

  • 502-65-8

  • 75051-10MG

  • 4,580.55CNY

  • Detail
  • USP

  • (1370860)  Lycopene  United States Pharmacopeia (USP) Reference Standard

  • 502-65-8

  • 1370860-500MG

  • 22,873.50CNY

  • Detail
  • Sigma

  • (L9879)  Lycopene  ≥90%, from tomato

  • 502-65-8

  • L9879-1MG

  • 1,708.20CNY

  • Detail
  • Sigma

  • (L9879)  Lycopene  ≥90%, from tomato

  • 502-65-8

  • L9879-5MG

  • 6,856.20CNY

  • Detail
  • Sigma

  • (L9879)  Lycopene  ≥90%, from tomato

  • 502-65-8

  • L9879-10MG

  • 10,272.60CNY

  • Detail

502-65-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name lycopene

1.2 Other means of identification

Product number -
Other names LYCOSOURCE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Food Additives: COLOUR
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:502-65-8 SDS

502-65-8Synthetic route

8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(tetrahydropyranyl) ether
1116695-25-0

8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(tetrahydropyranyl) ether

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 13h;79%
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 13h; Product distribution / selectivity;79%
8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(tetrahydropyranyl) ether
1116695-25-0

8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(tetrahydropyranyl) ether

A

lycopene
502-65-8

lycopene

B

(9Z)-lycophene
64727-64-6

(9Z)-lycophene

Conditions
ConditionsYield
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 13h; Inert atmosphere;A 79%
B n/a
7,7',11,11'-tetra(phenylsulfonyl)-7,7',8,8',11,11',12,12'-octahydrolycopene
359643-76-8

7,7',11,11'-tetra(phenylsulfonyl)-7,7',8,8',11,11',12,12'-octahydrolycopene

A

lycopene
502-65-8

lycopene

B

(9Z)-lycophene
64727-64-6

(9Z)-lycophene

Conditions
ConditionsYield
With sodium ethanolate In ethanol Heating;A 78%
B 20%
11,11',12,12'-tetrahydro-11,11'-bis(phenylsulfonyl)lycopene
630426-43-6

11,11',12,12'-tetrahydro-11,11'-bis(phenylsulfonyl)lycopene

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With sodium ethanolate In ethanol; benzene at 90℃; for 12h;78%
crocetindial
502-70-5

crocetindial

benzothiazol-2-yl geranyl sulfone

benzothiazol-2-yl geranyl sulfone

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
Stage #1: benzothiazol-2-yl geranyl sulfone With sodium hexamethyldisilazane In tetrahydrofuran at -78℃; for 0.25h;
Stage #2: crocetindial In tetrahydrofuran at -78℃; for 1.5h;
72%
dodecanedial
38279-34-4

dodecanedial

3,7,11-trimethyl-1,3,6,10-tetraene-dodecyl diethyl phosphonate
1239885-49-4

3,7,11-trimethyl-1,3,6,10-tetraene-dodecyl diethyl phosphonate

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
Stage #1: 3,7,11-trimethyl-1,3,6,10-tetraene-dodecyl diethyl phosphonate With n-butyllithium In tetrahydrofuran; hexane at -40℃; for 2h; Inert atmosphere;
Stage #2: dodecanedial In tetrahydrofuran; hexane at -40 - 30℃; for 1.58333h;
71%
2,7-dimethyl-2,4,6-octanetriene-1,8-dialdehyde
5056-17-7, 3049-35-2

2,7-dimethyl-2,4,6-octanetriene-1,8-dialdehyde

3,7,11-trimethyl-1,3,6,10-tetraene-dodecyl diethyl phosphonate
1239885-49-4

3,7,11-trimethyl-1,3,6,10-tetraene-dodecyl diethyl phosphonate

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
Stage #1: 3,7,11-trimethyl-1,3,6,10-tetraene-dodecyl diethyl phosphonate With potassium tert-butylate In tetrahydrofuran; dimethyl sulfoxide at -30 - -25℃; for 5h; Wittig-Horner Reaction; Inert atmosphere;
Stage #2: 2,7-dimethyl-2,4,6-octanetriene-1,8-dialdehyde In tetrahydrofuran; dimethyl sulfoxide at -30 - 20℃; for 1.25h; Wittig-Horner Reaction; Inert atmosphere;
59%
Stage #1: 3,7,11-trimethyl-1,3,6,10-tetraene-dodecyl diethyl phosphonate With potassium tert-butylate In tetrahydrofuran; dimethyl sulfoxide at 5℃; for 2h; Inert atmosphere;
Stage #2: 2,7-dimethyl-2,4,6-octanetriene-1,8-dialdehyde In tetrahydrofuran; dimethyl sulfoxide at 5 - 25℃; for 1.58h;
Stage #3: In chloroform for 2h; Reflux; Inert atmosphere;
52.3%
Stage #1: 3,7,11-trimethyl-1,3,6,10-tetraene-dodecyl diethyl phosphonate With potassium tert-butylate In tetrahydrofuran; dimethyl sulfoxide at 5℃; for 2h; Inert atmosphere;
Stage #2: 2,7-dimethyl-2,4,6-octanetriene-1,8-dialdehyde In tetrahydrofuran; dimethyl sulfoxide at 5 - 25℃; for 1.58333h;
52.3%
(3E,5E,7E,9E,11E)-4,8,12,16-tetramethylheptadeca-1,3,5,7,9,11,15-heptaene
1353023-72-9

(3E,5E,7E,9E,11E)-4,8,12,16-tetramethylheptadeca-1,3,5,7,9,11,15-heptaene

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With tricyclohexylphosphine[1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidine][benzylidene]ruthenium(II) dichloride In dichloromethane at 50℃; for 6.5h; Inert atmosphere;58%
9,24-dibromo-8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaene
1116695-27-2

9,24-dibromo-8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaene

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 11h;57%
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 11h; Product distribution / selectivity;57%
9,24-dibromo-8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaene
1116695-27-2

9,24-dibromo-8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaene

A

lycopene
502-65-8

lycopene

B

(9Z)-lycophene
64727-64-6

(9Z)-lycophene

Conditions
ConditionsYield
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 11h; Inert atmosphere;A 57%
B n/a
8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(methoxymethyl) ether
1116695-24-9

8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(methoxymethyl) ether

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 15h;56%
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 15h; Product distribution / selectivity;56%
8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(methoxymethyl) ether
1116695-24-9

8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(methoxymethyl) ether

A

lycopene
502-65-8

lycopene

B

(9Z)-lycophene
64727-64-6

(9Z)-lycophene

Conditions
ConditionsYield
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 15h; Inert atmosphere;A 56%
B n/a
florisil

florisil

aqueous sodium chloride

aqueous sodium chloride

3,7,11-trimethyl-2,4,6,10-dodecatetraenylphosphonic acid, diethyl ester

3,7,11-trimethyl-2,4,6,10-dodecatetraenylphosphonic acid, diethyl ester

(2E,4E,6E)-2,7-dimethyl-2,4,6-octatrienedial
5056-17-7

(2E,4E,6E)-2,7-dimethyl-2,4,6-octatrienedial

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With potassium tert-butylate In tetrahydrofuran; chloroform; benzene54%
8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(1-ethoxyethyl) ether
1116695-26-1

8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(1-ethoxyethyl) ether

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 18h;52%
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 18h; Product distribution / selectivity;52%
8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(1-ethoxyethyl) ether
1116695-26-1

8,16,25-tris(benzenesulfonyl)-2,6,10,14,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaene-9,24-diol, bis(1-ethoxyethyl) ether

A

lycopene
502-65-8

lycopene

B

(9Z)-lycophene
64727-64-6

(9Z)-lycophene

Conditions
ConditionsYield
With potassium methanolate In cyclohexane; benzene at 70 - 80℃; for 18h; Inert atmosphere;A 52%
B n/a
(1E,3E)-2-[4,8-dimethylnona-1,3,7-trienyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
1427286-53-0

(1E,3E)-2-[4,8-dimethylnona-1,3,7-trienyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

(2E,4E,6E,8E,10E,12E,14E)-2,15-diiodo-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaene
1427286-50-7

(2E,4E,6E,8E,10E,12E,14E)-2,15-diiodo-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaene

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With tetrakis(triphenylphosphine) palladium(0); thallium(I) hydroxide; 2,6-di-tert-butyl-4-methyl-phenol In tetrahydrofuran; water; toluene at 25℃; for 5h; Suzuki Coupling; Inert atmosphere;52%
C56H80O8S2
870636-74-1

C56H80O8S2

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With potassium methanolate In cyclohexane at 80℃; for 16h;28%
tetrachloromethane
56-23-5

tetrachloromethane

N-Bromosuccinimide
128-08-5

N-Bromosuccinimide

all-trans-neurosporene
502-64-7

all-trans-neurosporene

acetic acid
64-19-7

acetic acid

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
at 0℃;
Geraniol
106-24-1

Geraniol

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
Multi-step reaction with 7 steps
1.1: tetrapropylammonium perruthennate; 4-methylmorpholine N-oxide / dichloromethane / 4 h / 0 - 25 °C / Molecular sieve; Inert atmosphere
2.1: lithium diisopropyl amide / tetrahydrofuran; hexane / 0.5 h / -78 °C / Inert atmosphere
2.2: 1.5 h / -78 - 25 °C / Inert atmosphere
3.1: zirconocene dichloride; diisobutylaluminium hydride / tetrahydrofuran; hexane / 1 h / 0 - 25 °C / Inert atmosphere
3.2: 0.5 h / -78 °C / Inert atmosphere
4.1: tetrakis(triphenylphosphine) palladium(0); copper(I) thiophene-2-carboxylate; Tetrabutylammoniumsalz der Diphenylphosphinsaeure / N,N-dimethyl-formamide / 0.75 h / 25 °C / Inert atmosphere
5.1: manganese(IV) oxide; sodium carbonate / dichloromethane / 0.5 h / 0 - 25 °C / Inert atmosphere
6.1: sodium hexamethyldisilazane / tetrahydrofuran; hexane / 0.5 h / 25 °C / Inert atmosphere
6.2: 2 h / -78 °C / Inert atmosphere
7.1: tricyclohexylphosphine[1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidine][benzylidene]ruthenium(II) dichloride / dichloromethane / 6.5 h / 50 °C / Inert atmosphere
View Scheme
Multi-step reaction with 3 steps
1: tetrapropylammonium perruthennate; 4-methylmorpholine N-oxide / 2 h / 25 °C / Inert atmosphere
2: chromium dichloride; lithium chloride / tetrahydrofuran / 25 °C / Inert atmosphere
3: 2,6-di-tert-butyl-4-methyl-phenol; tetrakis(triphenylphosphine) palladium(0); thallium(I) hydroxide / water; tetrahydrofuran; toluene / 5 h / 25 °C / Inert atmosphere
View Scheme
With triphenylphosphine hydrochloride; N,N-dimethyl-formamide anschliessend mit 2,6,11,15-Tetramethyl-hexadeca-2t,4t,6t,8t,10t,12t,14t-heptaendial dann mit methanol. Natriummethylat;
15-cis-lycopene
59092-07-8

15-cis-lycopene

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With Petroleum ether at 80 - 100℃;
<3,7-dimethyl-octa-2t(?),6-dienyl>-triphenyl-phosphonium bromide

<3,7-dimethyl-octa-2t(?),6-dienyl>-triphenyl-phosphonium bromide

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With diethyl ether; phenyllithium anschliessend Erwaermen mit 2,6,11,15-Tetramethyl-hexadeca-2t,4t,6t,8t,10t,12t,14t-heptaendial in Dichlormethan;
15-cis-lycopene
59092-07-8

15-cis-lycopene

petroleum ether

petroleum ether

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
at 80℃;
(13Z)-lycophene
13018-46-7

(13Z)-lycophene

iodine
7553-56-2

iodine

benzene
71-43-2

benzene

B

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
at 25℃;
(13Z)-lycophene
13018-46-7

(13Z)-lycophene

iodine
7553-56-2

iodine

petroleum ether

petroleum ether

B

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
at 20℃;
iodine
7553-56-2

iodine

benzene
71-43-2

benzene

A

(13Z)-lycophene
13018-46-7

(13Z)-lycophene

B

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
di-cis(?)-lycopene;
iodine
7553-56-2

iodine

petroleum ether

petroleum ether

A

(13Z)-lycophene
13018-46-7

(13Z)-lycophene

B

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
di-cis(?)-lycopene;
(13Z)-lycophene
13018-46-7

(13Z)-lycophene

lycopene
502-65-8

lycopene

Conditions
ConditionsYield
With hydrogenchloride; sodium chloride; pepsin; Tween-20 In various solvent(s) at 37℃; Kinetics;
Multi-step reaction with 2 steps
1: hexane / 792 h / 20 °C
2: hexane / 792 h / 20 °C
View Scheme
In ethyl acetate at 20℃; for 1128h; Reactivity; Heating;
lycopene
502-65-8

lycopene

A

(2E,4E,6E,8E,10E,12E,14E)-2,7,11,15,19-pentamethylicosa-2,4,6,8,10,12,14,18-octaenal
103956-99-6, 1071-52-9

(2E,4E,6E,8E,10E,12E,14E)-2,7,11,15,19-pentamethylicosa-2,4,6,8,10,12,14,18-octaenal

B

(4E,6E,8E,10E,12E,14E,16E,18E,20E,22E)-2,6,10,15,19,23,27-heptamethyloctacosa-2,4,6,8,10,12,14,16,18,20,22,26-dodecaene

(4E,6E,8E,10E,12E,14E,16E,18E,20E,22E)-2,6,10,15,19,23,27-heptamethyloctacosa-2,4,6,8,10,12,14,16,18,20,22,26-dodecaene

C

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-2,6,11,15,19-pentamethyldocosa-2,4,6,8,10,12,14,16,18-nonaenedial

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-2,6,11,15,19-pentamethyldocosa-2,4,6,8,10,12,14,16,18-nonaenedial

D

(4E,6E,8E,10E,12E,14E,16E)-4,8,12,17-tetramethyl-18-oxononadeca-4,6,8,10,12,14,16-heptaenal

(4E,6E,8E,10E,12E,14E,16E)-4,8,12,17-tetramethyl-18-oxononadeca-4,6,8,10,12,14,16-heptaenal

E

(2E,4E,6E,8E,10E,12E,14E,16E)-2,6,11,15-tetramethyloctadeca-2,4,6,8,10,12,14,16-octaenedial

(2E,4E,6E,8E,10E,12E,14E,16E)-2,6,11,15-tetramethyloctadeca-2,4,6,8,10,12,14,16-octaenedial

Conditions
ConditionsYield
With potassium permanganate; cetyltrimethylammonim bromide In dichloromethane; water; toluene at 26℃; for 0.5h;A 10.8%
B 7.5%
C 19.73%
D 13.5%
E 23.2%
tetrachloromethane
56-23-5

tetrachloromethane

N-Bromosuccinimide
128-08-5

N-Bromosuccinimide

lycopene
502-65-8

lycopene

(3E,3'E)-3,4,3',4'-tetradehydro-ψ,ψ-carotene
4481-63-4

(3E,3'E)-3,4,3',4'-tetradehydro-ψ,ψ-carotene

lycopene
502-65-8

lycopene

6,8'-diapo-carotene-6,8'-dial

6,8'-diapo-carotene-6,8'-dial

Conditions
ConditionsYield
With potassium permanganate; sodium carbonate; benzene
lycopene
502-65-8

lycopene

A

apo-8'-lycopenal
103957-00-2

apo-8'-lycopenal

B

apo-6'-lycopenal
22255-36-3

apo-6'-lycopenal

Conditions
ConditionsYield
With potassium permanganate; sodium carbonate; benzene
lycopene
502-65-8

lycopene

(+/-)-5,6-dihydro-ψ,ψ-carotene-5rF,6tF-diol
66803-17-6, 143167-26-4

(+/-)-5,6-dihydro-ψ,ψ-carotene-5rF,6tF-diol

Conditions
ConditionsYield
With chloroform; boron fluoride ether anschliessendes Behandeln mit wasserhaltigem Aceton und Natriumhydrogencarbonat;
lycopene
502-65-8

lycopene

(+/-)-5rF,6tF-dimethoxy-5,6-dihydro-ψ,ψ-carotene
124270-73-1

(+/-)-5rF,6tF-dimethoxy-5,6-dihydro-ψ,ψ-carotene

Conditions
ConditionsYield
With boron fluoride ether anschliessendes Behandeln mit Methanol;
Conditions
ConditionsYield
With iodine di-cis(?)-lycopene;
at 25℃; di-cis(?)-lycopene;
Multi-step reaction with 2 steps
1: benzene / bei kurzem Kochen
2: iodine
View Scheme
In ethyl acetate for 12h; Reflux;
lycopene
502-65-8

lycopene

(13Z)-lycophene
13018-46-7

(13Z)-lycophene

Conditions
ConditionsYield
With benzene at 20℃; beim Stehenlassen;
With benzene at 20℃; beim Stehenlassen; bei Gegenwart von Jod;
With benzene bei kurzem Kochen;
With hydrogenchloride; sodium chloride; pepsin; Tween-20 In various solvent(s) at 37℃; Kinetics;
Sonication; Heating;

502-65-8Relevant articles and documents

Practical Synthesis of Lycopene

Song, Xiaohua,Xu, Huiting,Ye, Weidong,Lv, Chunlei,Cao, Ruiwei,Wu, Chunlei,Shen, Runpu

, p. 350 - 354 (2016)

-

Kinetic studies of lycopene isomerization in a tributyrin model system at gastric pH

Moraru, Catalin,Lee, Tung-Ching

, p. 8997 - 9004 (2005)

A semi-preparative HPLC method was developed in order to isolate and purify the 13-cis-lycopene isomer in tomato-based materials. The result was compared with the naturally predominant all-trans-lycopene isomer, in terms of stability to gastric pH at physiological temperature in a tributyrin model system. Kinetic experiments confirmed that lycopene isomerization is a reversible reaction, and under these conditions the all-trans isomer is more stable than the 13-cis isomer. In addition, it was found that at gastric pH 13-cis-lycopene would predominantly isomerize to the all-trans form rather than undergo oxidation/breakdown. A simulation based on the rate constants calculated in the kinetic study indicated that at gastric pH the lycopene isomeric distribution aimed toward an equilibrium characterized by approx 16% 13-cis-, 16% 9-cis-, and 68% all-trans-lycopene. This study suggests that pH-driven isomerization in the stomach is at least partially responsible for the relatively high cis-lycopene proportion found in vivo.

METHODS FOR PREPARATION OF LYCOPENES FROM C15-WITTIG SALTS AND METHODS FOR PURIFICATION OF HIGH ALL-E CONTAINING AND HIGH 6Z CONTAINING C15-WITTIG SALTS

-

Paragraph 0027, (2016/02/10)

The present invention relates to methods for preparation of lycopenes, especially to lycopenes with high all-E contents or high 6Z contents from C15-Wittig slats mixtures. (with high all-E-contents and high 6Z-contents, respectively). C15-Wittig slats mixtures are purified and 6Z-C15-Wittig salts are extracted from the mixtures. The extracted 6Z-C15-Wittig salts are, used in the synthesis of lycopenes with high 6Z contents and the residues are used in the synthesis of lycopenes with high All-E contents.

Whey protein vehicle for active agent delivery

-

, (2015/12/14)

The present invention relates to whey protein micelles, a process for the preparation of aggregates of the sane and particularly to their use as a delivery vehicle for active agents in the field of nutrition or cosmetics.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 502-65-8