2706
J. Chang et al.
LETTER
Org. Lett. 2000, 2, 3675. (e) Campo, M. A.; Larock, R. C.
J. Org. Chem. 2002, 67, 5616. (f) Matsuda, Y.; Kohra, S.;
Katou, K.; Uemura, T.; Yamashita, K. Heterocycles 2003,
60, 405. (g) Chernyak, N.; Tilly, D.; Li, Z.; Gevorgyan, V.
Chem. Commun. 2010, 46, 150. (h) Romagnoli, R.; Baraldi,
P. G.; Carrion, M. D.; Cara, C. L.; Cruz-Lopez, O.; Tolomeo,
M.; Grimaudo, S.; Cristina, A. D.; Pipitone, M. R.; Balzarini,
J.; Zonta, N.; Brancale, A.; Hamel, E. Bioorg. Med. Chem.
2009, 17, 6862.
Br
Br
N
a
b
N
N
Ts
H
O
O
O
2a
3
4
Scheme 2 Reagents and conditions: a) KOH, THF–H2O, reflux,
12 h, 95%; b) Pd(OAc)2, Ph3P, K2CO3, DMF, 120 °C, 8.5 h, 70%.
(8) (a) Li, V.-S.; Choi, D.; Wang, Z.; Jimenez, L. S.; Tang, M.-
S.; Kohn, H. J. Am. Chem. Soc. 1996, 118, 2326. (b) Perry,
P. J.; Read, M. A.; Davies, R. T.; Gowan, S. M.; Reszka, A.
P.; Wood, A. A.; Kelland, L. R.; Neidle, S. J. Med. Chem.
1999, 42, 2679. (c) Greenlee, M. L.; Laub, J. B.; Rouen, G.
P.; DiNinno, F.; Hammond, M. L.; Huber, J. L.; Sundelof, J.
G.; Hammond, G. G. Bioorg. Med. Chem. Lett. 1999, 9,
3225. (d) Lisowki, V.; Léonce, S.; Kraus-Berthier, L.;
Sopková-de Oliveira Santos, J.; Pierré, A.; Atassi, G.;
Caignard, D.-H.; Renard, P.; Rault, S. J. Med. Chem. 2004,
47, 1448. (e) Gould, S. J.; Melville, C. R.; Cone, M. C.;
Chen, J.; Carney, J. R. J. Org. Chem. 1997, 62, 320.
(f) Tierney, M. T.; Grinstaff, M. W. J. Org. Chem. 2000, 65,
5355.
Compound 4 is the key precursor to the cytostatic mito-
mucin family,8a and its analogues have shown a broad
spectrum of biological activities.8f,12 Although a number
of methodologies for the synthesis of analogues of 4 have
been developed,11,13 those involving a direct arylation re-
action are rare.7d,e Therefore, our findings may provide a
new entry to these polycyclic systems.
In summary, we have developed a novel approach to
indeno[2,1-b]pyrrol-8-ones through palladium-catalyzed
direct arylation reactions of 2-bromophenyl (N-tosylpyr-
rol-2′-yl)ketones. We assumed that the mechanism fol-
lowed a direct arylation–in situ detosylation, rather than a
detosylation–direct arylation reaction sequence. If deto-
sylation was first carried out on the substrates, palladium-
catalyzed C–N bond formation of the resulting 2-bromo-
phenyl pyrrol-2′-ylketones would then lead to the forma-
tion of the isomeric 9H-pyrrolo[1,2-a]indol-9-ones. These
investigations are currently under way.
(9) Song, C.; Knight, D. W.; Whatton, M. A. Tetrahedron Lett.
2004, 45, 9573.
(10) A mixture of 2a (210 mg, 0.52 mmol), Pd(OAc)2 (11 mg,
0.05 mmol), Ph3P (26 mg 0.10 mmol), and K2CO3 (216 mg,
1.56 mmol) in anhyd DMF (11 mL) under N2 was heated to
120 °C for 9 h and cooled. The mixture was partitioned
between EtOAc (60 mL) and H2O (100 mL). The separated
aqueous phase was extracted with EtOAc (3 × 50 mL). The
combined organic extracts were washed with brine (150
mL), then dried (Na2SO4), filtered, and evaporated. The
residue was purified by column chromatography on silica
gel (35% EtOAc in PE) to give 1a (68 mg, 78%) as a red
solid; mp 205–206 °C. IR: νmax = 3222, 1690, 1632, 1607,
1509, 1450, 1357, 1319, 1272, 1098 cm–1. 1H NMR (300
MHz, DMSO-d6): δ = 6.19 (1 H, m), 6.99–7.27 (5 H m),
12.00 (1 H, s). 13C NMR (75 MHz, DMSO-d6): δ = 103.8,
119.0, 122.6, 126.9, 131.2, 131.7, 133.2, 138.0, 139.1,
142.9, 180.0. ESI-MS: m/z (%) = 192 (100) [M + Na]+, 170
(53) [M + H]+. HRMS: m/z calcd for C11H7NNaO: 192.0425;
found: 192.0416 [M + Na]+.
Acknowledgment
We are grateful to the National Natural Science Foundation of Chi-
na (#30825043; #20902085) for financial support.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
References and Notes
(11) Kashulin, I. A.; Nifant’ev, I. E. J. Org. Chem. 2004, 69,
5476.
(1) For recent reviews, see: (a) McGlacken, G. P.; Bateman, L.
M. Chem. Soc. Rev. 2009, 38, 2447. (b) Chen, X.; Engle, K.
M.; Wang, D.-H.; Yu, J.-Q. Angew Chem. Int. Ed. 2009, 48,
5094. (c) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev.
2007, 107, 174.
(2) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(3) Negishi, E.-I.; Liu, F. In Metal-Catalyzed Cross-Coupling
Reactions; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH:
Weinheim, 1998, 1–47.
(4) Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61,
2245.
(5) Stanforth, S. P. Tetrahedron 1998, 54, 263.
(6) Hiyama, T. In Metal-Catalyzed Cross-Coupling Reactions;
Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim,
1998, 421–453.
(12) (a) Rault, S.; Lancelot, J. C.; Bouyazza, L.; Robba, M.;
Quermonne, M. A.; Nammathao, B.; Louchahi-Raoul, J.;
Marcy, R. Eur. J. Med. Chem. 1991, 939. (b) Rochais, C.;
Dallemagne, P.; Rault, S. Anti-Cancer Agents Med. Chem.
2009, 9, 369. (c) Diana, P.; Stagno, A.; Barraja, P.;
Montalbano, A.; Carbone, A.; Parrino, B.; Cirrincione, G.
Tetrahedron 2011, 67, 3374.
(13) (a) Aiello, F.; Garofalo, A.; Grande, F. Tetrahedron Lett.
2010, 51, 6635. (b) Aiello, F.; Garofalo, A.; Grande, F.
Tetrahedron Lett. 2011, 52, 5824. (c) Aiello, F.; Garofalo,
A.; Grande, F. Tetrahedron 2010, 66, 274. (d) Josey, A. D.;
Jenner, E. L. J. Org. Chem. 1962, 27, 2466. (e) Mazzola, V.
J.; Bernady, K. F.; Franck, R. W. J. Org. Chem. 1967, 32,
486. (f) Bailey, A. S.; Scott, P. W.; Vandrevala, M. H.
J. Chem. Soc., Perkin Trans. 1 1980, 97. (g) Kobayashi, K.;
Himei, Y.; Fukamachi, S.; Tanmatsu, M.; Morikawa, O.;
Konishi, H. Tetrahedron 2007, 63, 4356.
(7) (a) Qabaja, G.; Jones, G. B. Tetrahedron Lett. 2000, 41,
5317. (b) Kozikowski, A. P.; Ma, D. Tetrahedron Lett. 1991,
32, 3317. (c) Liu, T.-P.; Liao, Y.-X.; Xing, C.-H.; Hu, Q.-S.
Org. Lett. 2011, 13, 2452. (d) Campo, M. A.; Larock, R. C.
Synlett 2012, 23, 2704–2706
© Georg Thieme Verlag Stuttgart · New York