Journal of the American Chemical Society
Page 8 of 9
1, 0096. (c) Roke, D.; Wezenberg, S. J.; Feringa, B. L. Molecular
rotary motors: unidirectional motion around double bonds. Proc.
Natl. Acad. Sci. U SA, 2018, 115, 9423-9431.
thermodynamic synthesis of rotaxane dendrimers and related
structures. Poly. Chem., 2010, 1, 988-1000. (c) Chen, C.-F. High-
generation organometallic rotaxane dendrimer. Sci. China Chem.,
2015, 58, 1089.
(15) Bruns, C. J.; Stoddart, J. F. The Nature of the Mechanical Bond
(John Wiley & Sons, Hoboken, 2016).
1
2
3
4
5
6
7
8
(6) (a) Lewandowski, B.; De Bo, G.; Ward, J. W.; Papmeyer, M.;
Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M. E.; Heckmann, D.;
Goldup, S. M.; D’Souza, D. M.; Fernandes, A. E.; Leigh, D. A.
Sequence-specific peptide synthesis by an artificial small-molecule
machine. Science, 2013, 339, 189-193. (b) De Bo, G.; Kuschel, S.;
Leigh, D. a; Lewandowski, B.; Papmeyer, M.; Ward, J. W. Efficient
assembly of threaded molecular machines for sequence-specific
synthesis. J. Am. Chem. Soc., 2014, 136, 5811-5814. (c) De Bo, G.;
Gall, M. A. Y.; Kitching, M. O.; Kuschel, S.; Leigh, D. A.; Tetlow, D. J.;
Ward, J. W. Sequence-specific β-peptide synthesis by a rotaxane-
based molecular machine. J. Am. Chem. Soc., 2017, 139, 10875-
10879. (d) De Bo, G.; Gall, M. A. Y.; Kuschel, S.; De Winter, J.;
Gerbaux, P.; Leigh, D. A. An artificial molecular machine that builds
an asymmetric catalyst. Nat. Nanotechnol., 2018, 13, 381-385.
(7) (a) Vale, R. D.; Milligan, R. A. The way things move: looking
under the hood of molecular motor proteins. Science, 2000, 288,
88-95. (b) Alberts, B. The cell as a collection of protein machines:
preparing the next generation of molecular biologists. Cell, 1998,
92, 291-294.
(16) (a) Wang, Y.-X.; Zhou, Q.-F.; Chen, L.-J.; Xu, L.; Wang, C.-H.; Li,
X.; Yang, H.-B. Facile construction of organometallic rotaxane-
terminated dendrimers using neutral platinum–acetylides as the
main scaffold. Chem. Commun., 2018, 54, 2224-2227. (b) Wang, W.;
Chen, L.-J.; Wang, X.-Q.; Sun, B.; Li, X.; Zhang, Y.; Shi, J.; Yu, Y.; Zhang,
L.; Liu, M.; Yang, H.-B. Organometallic rotaxane dendrimers with
fourth-generation mechanically interlocked branches. Proc. Natl.
Acad. Sci. USA, 2015, 112, 5597-5601. (c) Wang, X.-Q.; Wang, W.; Li,
W.-J.; Chen, L.-J.; Yao, R.; Yin, G.-Q.; Wang, Y.-X.; Zhang, Y.; Huang, J.;
Tan, H.; Yu, Y.; Li, X.; Xu, L.; Yang, H.-B. Dual stimuli-responsive
rotaxane-branched dendrimers with reversible dimension
modulation. Nat. Commun., 2018, 9, 3190. (d) Wang, X.-Q.; Wang,
W.; Li, W.-J.; Qin, Y.; Yin, G.-Q.; Jiang, W.-L.; Li, X.; Wu, S.; Yang, H.-B.
Rotaxane-branched dendrimers with aggregation-induced
emission behavior. Org. Chem. Front., 2019, 6, 1686-1691. (e) He,
M.; Chen, L.; Jiang, B.; Tan, H.; Wang, C.; Yang, H. Facile construction
of Zn(II)-porphyrin-cored [5]rotaxane and its controllable
aggregation behaviours. Chin. Chem. Lett., 2019, 30, 131-134.
(17) (a) Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto,
Y. para-Bridged symmetrical pillar[5]arenes: their Lewis acid
catalyzed synthesis and host-guest property. J. Am. Chem. Soc.,
2008, 130, 5022-5023. (b) Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.;
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) Krans, J. L. The sliding filament theory of muscle contraction.
Nat. Educ., 2010, 3, 66.
(9) Bruns, C. J.; Stoddart, J. F. Rotaxane-based molecular muscles.
Acc. Chem. Res., 2014, 47, 2186-2199, and references therein.
(10) Goujon, A.; Moulin, E.; Fuks, G.; Giuseppone, N. [c2]daisy chain
rotaxanes as molecular muscles. CCS Chemistry, 2019, 1, 83-96.
(11) (a) Du, G.; Moulin, E.; Jouault, N.; Buhler, E.; Giuseppone, N.
muscle-like supramolecular polymers- integrated motions from
thousands of molecular machines. Angew. Chem. Int. Ed., 2012, 51,
12504-12508. (b) Goujon, A.; Du, G.; Moulin, E.; Fuks, G.; Maaloum,
M.; Buhler, E.; Giuseppone, N. Hierarchical self‐assembly of
supramolecular muscle‐like fibers. Angew. Chem. Int. Ed., 2016, 55,
703-707. (c) Goujon, A.; Mariani, G.; Lang, T.; Moulin, E.; Rawiso, M.;
Buhler, E.; Giuseppone, N. Controlled sol-gel transitions by
actuating molecular machine based supramolecular polymers. J.
Am. Chem. Soc., 2017, 139, 4923-4928.
(12) (a) Vögtle, F.; Richardt, G.; Werber, N. Dendrimer Chemistry:
Concepts, Syntheses, Properties, Applications (Wiley, Weinheim,
2009). (b) Newkome, G. R.; Moorefield, C. N. From 1→ 3 dendritic
designs to fractal supramacromolecular constructs: Understanding
the pathway to the Sierpiński gasket. Chem. Soc. Rev., 2015, 44,
3954-3967. (c) Zhao, G.-Z.; Chen, L.-J.; Wang, W.; Zhang, J.; Yang, G.;
Wang, D.-X.; Yu, Y.; Yang, H.-B. Stimuli‐responsive supramolecular
gels through hierarchical self‐assembly of discrete rhomboidal
metallacycles. Chem. -Eur. J., 2013, 19, 10094-10100. (d) Xu, L.;
Chen, L.-J.; Yang, H.-B. Recent progress in the construction of
cavity-cored supramolecular metallodendrimers via coordination-
driven self-assembly. Chem. Commun., 2014, 50, 5156-5170. (e)
Chen, L.-J.; Zhao, G.-Z.; Jiang, B.; Sun, B.; Wang, M.; Xu, L.; He, J.; Abliz,
Z.; Tan, H.; Li, X.; Yang, H.-B. Smart stimuli-responsive spherical
Huang, F. Pillararenes,
a new class of macrocycles for
supramolecular chemistry. Acc. Chem. Res., 2012, 45, 1294-1308.
(c) Ogoshi, T.; Yamagishi, T.-a.; Nakamoto, Y. Pillar-shaped
macrocyclic hosts pillar[n]arenes: new key players for
supramolecular chemistry. Chem. Rev., 2016, 116, 7937-8002. (d)
Jiang, B.; Wang, W.; Zhang, Y.; Lu, Y.; Zhang, C.-W.; Yin, G.-Q.; Zhao,
X.-L.; Xu, L.; Tan, H.; Li, X.; Jin, G.-X.; Yang, H.-B. Construction of π
‐surface‐metalated pillar[5]arenes which bind anions via anion–π
interactions. Angew. Chem. Int. Ed., 2017, 56, 14438-14442. (e) Jie,
K.; Zhou, Y.; Li, E.; Huang, F. Nonporous adaptive crystals of
pillararenes. Acc. Chem. Res., 2018, 51, 2064-2072. (f) Kakuta, T.;
Yamagishi, T.-a.; Ogoshi, T. Stimuli-responsive supramolecular
assemblies constructed from pillar[n]arenes. Acc. Chem. Res., 2018,
5, 1656-1666. (g) Song, N.; Kakuta, T.; Yamagishi, T.; Yang, Y.-W.;
Ogoshi, T. Molecular-scale porous materials based on
pillar[n]arenes. Chem, 2018, 4, 2029-2053. (h) Fa, S.; Kakuta, T.;
Yamagishi, T.-a.; Ogoshi, T. One-, two-, and three-dimensional
supramolecular assemblies based on tubular and regular
polygonal structures of pillar[n]arenes. CCS Chemistry, 2019, 1, 50-
63.
(18) (a) Leininger, S.; Stang, P. J.; Huang, S. Synthesis and
characterization of organoplatinum dendrimers with 1,3,5-
triethynylbenzene building blocks. Organometallics, 1998, 17,
3981-3987. (b) Wang, W.; Yang, H.-B.; Linear neutral platinum–
acetylide moiety: beyond the links. Chem. Commun., 2014, 50,
5171-5186. (c) Jiang, B.; Zhang, J.; Ma, J.-Q.; Zheng, W.; Chen, L.-J.;
Sun, B.; Li, C.; Hu, B.-W.; Tan, H.; Li, X.; Yang, H.-B. Vapochromic
behavior of a chair-shaped supramolecular metallacycle with
ultra-stability. J. Am. Chem. Soc., 2016, 138, 738-741. (d) Xu, L.;
Yang, H.-B. Our expedition in linear neutral platinum‐acetylide
complexes: the preparation of micro/nanostructure materials,
complicated topologies, and dye‐sensitized solar cells. Chem. Rec.,
2016, 16, 1274-1297. (e) Chen, L.-J.; Yang, H.-B. Construction of
stimuli-responsive functional materials via hierarchical self-
assembly involving coordination interactions. Acc. Chem. Res.,
2018, 51, 2699-2710. (f) Wong, K. M.-C.; Yam, V. W.-W. Self-
assembly of luminescent alkynylplatinum (II) terpyridyl
complexes: Modulation of photophysical properties through
aggregation behavior. Acc. Chem. Res., 2011, 44, 424-434. (g) Yam,
V. W.-W.; Au, V. K.-M. S.; Leung, Y.-L. Light-emitting self-assembled
materials based on d8 and d10 transition metal complexes. Chem.
nanostructures
constructed
from
supramolecular
metallodendrimers via hierarchical self-assembly. J. Am. Chem.
Soc., 2014, 136, 5993-6001.
(13) (a) Kim, S.-Y.; Ko, Y. H.; Lee, J. W.; Sakamoto, S.; Yamaguchi, K.;
Kim, K. Toward high-generation rotaxane dendrimers that
incorporate a ring component on every branch: noncovalent
synthesis of a dendritic [10]pseudorotaxane with 13 molecular
components. Chem. -Asian J., 2007, 2, 747-754. (b) Ho, W. K.-W.;
Lee, S.-F.; Wong, C.-H.; Zhu, X.-M.; Kwan, C.-S.; Chak, C.-P.; Mendes,
P. M.; Cheng, C. H. K. K.; Leung, K. C.-F. Type III-B rotaxane
dendrimers. Chem. Commun., 2013, 49, 10781-10783. (c) Kwan, C.-
S.; Zhao, R.; Van Hove, M. A.; Cai, Z.; Leung, K. C.-F. Higher-
generation type III-B rotaxane dendrimers with controlling
particle size in three-dimensional molecular switching. Nat.
Commun., 2018, 9, 497.
(14) (a) Lee, J. K.; Kim, K. Rotaxane dendrimers. Top. Curr. Chem.,
2003, 228, 111-140. (b) Leung, K. C.-F.; Lau, K. N. Self-assembly and
ACS Paragon Plus Environment