28
C. ZHANG ET AL.
2. Huerta, R.; Flores-Figueroa, A.; Ugalde-Sald´ıvar, V. M.; Castillo, I. Elec-
15. Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of
an exceptionally stable and highly porous metal-organic framework. Nature
1999, 402, 276–279.
16. Wang, R.; Zhang, J.; Li, L. Conformation preference of a flexible cy-
clohexanetetracarboxylate ligand in three new metal-organic frameworks:
structures, magnetic and luminescent properties. Inorg. Chem. 2009, 48,
7194–7200.
17. Zang, S.; Su, Y.; Li, Y.; Ni, Z.; Meng, Q. Assemblies of a new flexible
multicarboxylate ligand and d10 metal centers toward the construction of
homochiral helical coordination polymers: structures, luminescence, and
NLO-active properties. Inorg. Chem. 2006, 45, 174–180.
trochemical behavior of an aminotrithioether ligand: copper(II)-mediated
oxidative C−C bond formation. Inorg. Chem. 2007, 46, 9510–9512.
3. Soares-Santos, P. C. R.; Cunha-Silva, L. S.; Paz, F. A. A.; Ferreira, R. A. S.;
Rocha, J. O.; Trindade, T.; Carlos, L. s. D.; Nogueira, H. I. S. Photolumi-
nescent 3D lanthanide–organic frameworks with 2,5-pyridinedicarboxylic
and 1,4-phenylenediacetic acids. Cryst. Growth Des. 2008, 8, 2505–2516.
4. Ga´ndara, F.; Gomez-Lor, B.; Gutie´rrez-Puebla, E.; Iglesias, M.; Monge, M.
A.; Proserpio, D. M.; Snejko, N. An indium layered MOF as recyclable
Lewis acid catalyst. Chem. Mater. 2008, 20, 72–76.
5. Tanabe, K. K.; Cohen, S. M. Modular, active, and robust Lewis acid cat-
alysts supported on a metal–organic framework. Inorg. Chem 2010, 49, 18. Humphrey, S. M.; Wood, P. T. Multiple areas of magnetic bistability in the
6766–6774.
topological ferrimagnett [Co3(NC5H3(CO2)2–2,5)2(μ3-OH)2(OH2)2]. J.
Am. Chem. Soc. 2004, 126, 13236–13237.
19. Chen, J.-X.; Liu, S.-X.; Gao, E.-Q. Syntheses, structures and fluores-
cence of three novel 3D coordination polymerss [Cd3(TMA)2(H-PRZ)
6. Lu, W.-G.; Jiang, L.; Feng, X.-L.; Lu, T.-B. Three-dimensional lanthanide
anionic metal–organic frameworks with tunable luminescent properties in-
duced by cation exchange. Inorg. Chem. 2009, 48, 6997–6999.
7. Garibay, S. J.; Wang, Z.; Cohen, S. M. Evaluation of heterogeneous
metal–organic framework organocatalysts prepared by postsynthetic mod-
ification. Inorg. Chem. 2010, 49, 8086–8091.
(H2O)3(OH)]
·
H2O, Cd2Na2(TMA)2(H2O)4 and [Cd2Co(TMA)2
(H2O)4] · 2H2O (TMA = trimesic acid, PRZ = piperazine). Polyhedron
2004, 23, 1877–1888.
8. Kong, X.-J.; Ren, Y.-P.; Long, L.-S.; Zheng, Z.; Huang, R.-B.; Zheng, L.-S.
A keplerate magnetic cluster featuring an icosidodecahedron of Ni(II) ions
encapsulating a dodecahedron of La(III) ions. J. Am. Chem. Soc. 2007, 129,
7016–7017.
9. Sun, C.-Y.; Liu, S.-X.; Liang, D.-D.; Shao, K.-Z.; Ren, Y.-H.; Su, Z.-M.
Highly stable crystalline catalysts based on a microporous metal–organic
20. Lin, Z.; Slawin, A. M. Z.; Morris, R. E. Chiral induction in the ionothermal
synthesis of a 3-D coordination polymer. J. Am. Chem. Soc. 2007, 129,
4880–4881.
21. Zhang, S.; Yang, S.; Lan, J.; Yang, S.; You, J. Helical nonracemic tubu-
lar coordination polymer gelators from simple achiral molecules. Chem.
Commun. 2008, 46, 6170–6172.
framework and polyoxometalates. J. Am. Chem. Soc. 2009, 131, 1883–1888. 22. Li, C.; Zhao, L.; Li, J.; Ding, X.; Chen, S.; Zhang, Q.; Yu, Y.; Jia,
10. Hou, R.; Huang, T.-H.; Wang, X.-J.; Jiang, X.-F.; Ni, Q.-L.; Gui, L.-C.;
Fan, Y.-J.; Tan, Y.-L. Synthesis, structural characterization and luminescent
X. Self-assembly off [2]pseudorotaxanes based on pillar[5]arene and
bis(imidazolium) cations. Chem. Commun. 2010, 46, 9016–9018.
properties of a series of Cu(i) complexes based on polyphosphine ligands. 23. Zhu, S.; Zhang, H.; Zhao, Y.; Shao, M.; Wang, Z.; Li, M. Synthesis,
Dalton Trans. 2011, 40, 7551–7558.
structures and luminescence of three coordination polymers constructed
from rigid 1,3,5-benzenetricarboxylic acid and flexible bis(imidazol-1-
ylmethyl)-benzene. J. Mol. Struct. 2008, 892, 420–426.
11. Ove Kongshaug, K.; Fjellva˚g, H. Syntheses, structures and magnetic prop-
erties of Mn(II) containing 3D polymeric networks. Polyhedron 2007, 26,
5113–5119.
12. Zhang, P.-P.; Tian, A.-X.; Peng, J.; Pang, H.-J.; Sha, J.-Q.; Chen, Y.; Zhu,
M.; Wang, Y.-H. The first polypseudo-rotaxane structure based on the Wells-
Dawson polyoxometalate. Inorg. Chem. Commun. 2009, 12, 902–904.
13. Hong, M.; Su, W.; Cao, R.; Zhang, W.; Lu, J. Controlled assembly based
on multibridging thiolate ligands: new polymeric silver(I) complexes with
24. Chawla, S. K.; Arora, M.; Na¨ttinen, K.; Rissanen, K.; Yakhmi, J. V. Syn-
theses and crystal structures of three novel Cu(II) coordination polymers of
different dimensionality constructed from Cu(II) carboxylates (carboxylate
= malonate (mal), 2 acetate (ac), fumarate (fum)) and conformationally
flexible 1,4-bis(imidazole-1-yl-methylene)benzene (IX). Polyhedron 2004,
23, 3007–3019.
one-dimensional chain and three-dimensional network structures. Inorg. 25. Hoskins, B. F.; Robson, R.; Slizys, D. A. An Infinite 2D Polyrotaxane net-
Chem. 1999, 38, 600–602.
work in Ag2(bix)3(NO3)2 (bix = 1,4-Bis(imidazol-1-ylmethyl)benzene).
14. Kasai, K.; Aoyagi, M.; Fujita, M. Flexible coordination networks with
fluorinated backbones. Remarkable ability for induced-fit enclathration of
organic molecules. J. Am. Chem. Soc. 2000, 122, 2140–2141.
J. Am. Chem. Soc. 1997, 119, 2952–2953.
26. Sheldrick, G. M. SHELX-97, Program for the Solution and Refinement of
Crystal Structures; University of Gottingen: Gottingen: Germany, 1997.