Journal of the American Chemical Society
Article
Notes
system and results in energetically similar 1,2- and 2,1-insertion
transition states. That is, site differentiation by extreme steric
bulk is not a feasible approach to tactic polymers because the
regioregularity is lost. In addition, the insertion studies also
disclosed an intrinsic problem of these catalysts: Increase of
steric bulk always leads to a reduction of the acrylate insertion
rates, and thus hinders chain growth. This culminates in a
complete suppression of consecutive insertions for Ar1.
Further Concepts. These limitations understood it is also
evident that there is a “window” of intermediate steric bulk,
which allows stereoselection without compromising regioregu-
larity. In more general terms, it is remarkable that any
stereoselection at all is possible in the open environment of
the hard/soft unsymmetric phosphinesulfonato ligand (Figure
1). One decisive feature appears to be the insertion from the
alkyl-olefin complex with the π-bound acrylate in cis-position to
the P-donor. This allows for influencing the stereoselectivity of
the insertion step via the P-substituents. With the concept of an
unsymmetric substitution, stereocontrol was realized. A
reduction of flexibility in such asymmetric complexes appears
a possible approach toward stereoselective polymerization.
Reduction of flexibility has already been shown to be possible
by a double ortho substitution of the aryl moieties at
phosphorus. However, a more effective concept may be the
introduction of a rigid spacer between the two different aryl
moieties (Figure 12). This could further allow one to place the
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the DFG (Me 1388/
10). B.N. acknowledges support by the state of Baden-
Wurttemberg by a Landesgraduiertenforderung-Stipend. We
̈
̈
thank Anna-Lena Steck for high resolution ESI−MS measure-
ments, Thomas Wiedemann for participation in this research as
a part of his undergraduate studies, Inigo Gottker-Schnetmann
̈
for fruitful discussions, and the HPC team of Enea for use of
the ENEA-GRID and the HPC facilities CRESCO in Portici,
Italy.
REFERENCES
■
(1) Baugh, L. S.; Canich, J. M. Stereoselective Polymerization with
Single-Site Catalysts; CRC Press: London, 2008.
(2) Matsuzaki, K.; Uryu, T.; Ishida, A.; Ohki, T.; Takeuchi, M. J.
Polym. Sci., Part A-1: Polym. Chem. 1967, 5, 2167−2177.
(3) Liu, W.; Nakano, T.; Okamoto, Y. Polym. J. 1999, 31, 479−481.
(4) Deng, H.; Soga, K. Macromolecules 1996, 29, 1847−1848.
(5) Porter, N. A.; Allen, T. R.; Breyer, R. A. J. Am. Chem. Soc. 1992,
114, 7676−7683.
(6) Liu, W.; Nakano, T.; Okamoto, Y. Polymer 2000, 41, 4467−4472.
(7) Matsuzaki, K.; Uryu, T.; Kanai, T.; Hosonuma, K.; Matsubara, T.;
Tachikawa, H.; Yamada, M.; Okuzono, S. Makromol. Chem. 1977, 178,
11−17.
(8) Brintzinger, H.-H.; Fischer, D.; Mulhaupt, R.; Rieger, B.;
̈
Waymouth, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143−1170.
(9) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000,
100, 1253−1346.
(10) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
1996, 118, 267−268.
(11) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am.
Chem. Soc. 1998, 120, 888−899.
Figure 12. Concepts toward stereoselective catalysts.
(12) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100,
1169−1204.
chiral information in the spacer, which might reduce steric bulk
at the active center. Preliminary analysis of the transition state
configuration reveals that for a rigid aryl configuration
presumably no large difference in size between the substituents
at the phosphorus is required, which again could help to keep
the steric bulk at the active center moderate.
Note that in parallel to this work, Nozaki et al.
communicated that (P∧O)PdMe complexes with asymmetric
substitution at phosphorus like Ar/H1 are capable of asymmetric
copolymerization of CO with polar monomers. In this case, the
copolymerization with CO introduces a nonchiral CO-spacer
between the chiral side chains. This apparently advantageously
reduces a chain end stereocontrol, which in our work
counteracts the enantiomorphic site stereocontrol of the
homoinsertions.56
(13) Drent, E.; Dijk, R. v.; Ginkel, R. v.; Oort, B. v.; Pugh, R. I. Chem.
Commun. 2002, 744−745.
(14) Guironnet, D.; Roesle, P.; Runzi, T.; Gottker-Schnetmann, I.;
̈
̈
Mecking, S. J. Am. Chem. Soc. 2009, 131, 422−423.
(15) Piche, L.; Daigle, J.-C.; Rehse, G.; Claverie, J. P. Chem.-Eur. J.
2012, 18, 3277−3285.
(16) Guironnet, D.; Caporaso, L.; Neuwald, B.; Gottker-Schnetmann,
̈
I.; Cavallo, L.; Mecking, S. J. Am. Chem. Soc. 2010, 132, 4418−4426.
(17) Corradini, P.; Guerra, G.; Cavallo, L. Acc. Chem. Res. 2004, 37,
231−241.
(18) Tshuva, E. Y.; Goldberg, I.; Kol, M. J. Am. Chem. Soc. 2000, 122,
10706−10707.
(19) Mitani, M.; Saito, J.; Ishii, S.-I.; Nakayama, Y.; Makio, H.;
Matsukawa, N.; Matsui, S.; Mohri, J.-i.; Furuyama, R.; Terao, H.;
Bando, H.; Tanaka, H.; Fujita, T. Chem. Rec. 2004, 4, 137−158.
(20) Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. Chem. Rev. 2011,
111, 2363−2449.
(21) Brookhart, M.; Wagner, M. I.; Balavoine, G. G. A.; Haddou, H.
A. J. Am. Chem. Soc. 1994, 116, 3641−3642.
(22) Aeby, A.; Consiglio, G. Inorg. Chim. Acta 1999, 296, 45−51.
(23) Bianchini, C.; Meli, A. Coord. Chem. Rev. 2002, 225, 35−66.
(24) Nozaki, K.; Sato, N.; Tonomura, Y.; Yasutomi, M.; Takaya, H.;
Hiyama, T.; Matsubara, T.; Koga, N. J. Am. Chem. Soc. 1997, 119,
12779−12795.
(25) Sesto, B.; Consiglio, G. Chem. Commun. 2000, 1011−1012.
(26) Sesto, B.; Consiglio, G. J. Am. Chem. Soc. 2001, 123, 4097−
4098.
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, tables, figures, and CIF files giving detailed experimental
procedures and analytical data, structural diagrams, selected
bond lengths and angles, and crystallographic data/processing
parameters for all structures. This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
(27) Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma,
K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088−14100.
1035
dx.doi.org/10.1021/ja3101787 | J. Am. Chem. Soc. 2013, 135, 1026−1036