56
F. Castañeda et al. / Journal of Molecular Structure 1034 (2013) 51–56
oxygen, and should not be so energetically unfavorable. Similarly
for the hypothetical syn t-butyl methyl ylide 5 interference be-
tween the ylidic t-butyl alkoxy group and the nonylidic methoxy
group could destabilize a syn conformer. Carboxylic ester groups
typically have the preferred Z conformation [21] and in crystal-
line syn ylidic esters the alkyl group are generally oriented away
from a nonylidic group, but in solution rotational barriers are
week [21] and rotation of the alkoxy group in the ylidic ester al-
lows it in a syn conformer to be oriented at some time in an E
conformation and toward the nonylidic ester group, with unfa-
vorable inter-alkyl contact. Similar considerations regarding
interactions between ylidic, and nonylidic groups apply to other
monoylidic aliphatic esters, but should be unimportant when
hydrogen is attached to the ylidic carbon, as in 1. These steric
effects are important in syn–anti diester ylides with different es-
ter groups where the bulkier alkoxy group has the anti confor-
mation [18]. Unfavorable interactions between alkoxy groups
could be present in hypothetical aliphatic syn–syn diesters
which, so far as we know, have not been observed in solution
or in the crystal.
Structures of hypothetical syn conformers of the t-butyl deriva-
tives 2 and 5 [6,7] were simulated by HF and DFT methods with
rotation about the bonds to the ylidic and nonylidic ester groups.
This approach was also applied to the minor syn conformer of
the monoylidic diethyl diester 3 and examples of probable unfa-
vorable encounters between ylidic and nonylidic alkyl groups are
shown as Supplementary data. These figures with rotations about
bonds involving the CH2 tether and nonylidic ester group and the
ylidic ester group in a syn conformer have no quantitative signifi-
cance but simply show how the ester groups can come into desta-
bilizing contact in solution. For anti ylides OAH interactions
between the small ester acyl oxygen and nonylidic ester alkyl
groups should not be unfavorable. These postulated interactions
in syn esters should not apply to keto ylides which have syn orien-
tations [12b,22].
Acknowledgements
The authors thank Ximena Ramírez for her valuable work in
production of this paper and are grateful to CEPEDEQ, Facultad
de Ciencias Químicas y Farmacéuticas, Universidad de Chile, for
instrumental facilities.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
References
[1] (a) L.F. Wilson, J.C. Tebby, J. Chem. Soc. Perkin Trans. 2 (1972) 31;
(b) L.F. Wilson, J.C. Tebby, Tetrahedron Lett. (1970) 3769.
[2] (a) H.I. Zeliger, J.P. Snyder, H.J. Bestmann, Tetrahedron Lett. (1969) 2199;
(b) D.M. Crouse, A.T. Wehman, E.E. Schweizer, Chem. Commun. (1968) 866;;
(c) H.J. Bestmann, J.F.M. Oth, R. Merényi, H. Weitkamp, Tetrahedron Lett.
(1966) 3355;
(d) H.I. Zeliger, J.P. Snyder, H.F. Bestmann, Tetrahedron Lett. (1970) 3313.
[3] S.M. Bachrach, C.I. Nitsche, in: F.R. Hartley (Ed.), The Chemistry of
Organophosphorus Compounds, vol. 3, Wiley, New York, 1994, p. 273
(Chapter 4).
[4] (a) T.A. Albright, M.D. Gordon, W.J. Freeman, E.E. Schweizer, J. Am. Chem. Soc.
98 (1976) 6249;
(b) G.A. Gray, J. Am. Chem. Soc. 95 (1973) 7736;
(c) F.J. Randall, A.W. Johnson, Tetrahedron Lett. (1968) 2841;
(d) R. Navarro, E.P. Urriolabeitia, J. Chem. Soc. Dalton Trans. (1999) 4111;
(e) A. Lledós, J.J. Carbó, E.P. Urriolabeitia, Inorg. Chem. 40 (2001) 4913.
[5] P.D. Boyle, Acta Crystallogr. Sect. C52 (1996) 2859.
[6] R.A. Aitken, N. Karodia, P. Lighfoot, J. Chem. Soc. Perkin Trans. 2 (2000) 333.
[7] A.F. Cameron, F.D. Duncanson, A.A. Freer, V.W. Armstrong, R. Ramage, J. Chem.
Soc. Perkin Trans. 2 (1975) 1030.
[8] (a) F. Castañeda, P. Silva, C.A. Bunton, M.T. Garland, R.F. Baggio, Acta
Crystallogr. C67 (2011) 319;
(b) R. Bacaloglu, A. Blaskó, C.A. Bunton, G. Cerichelli, F. Castañeda, E. Rivera, J.
Chem. Soc. Perkin Trans. 2 (1995) 965.
[9] S.M. Bachrach, J. Org. Chem. 57 (1992) 4367.
[10] (a) W.J. Hehre, A Guide to Molecular Mechanics and Quantum Chemical
Calculations, Wavefunctions, Inc., Irvine, 2003 (Chapter 16).;
(b) C.J. Cramer, Essentials of Quantum Chemistry, Wiley, New York, 2002
(Chapter 9).
[11] (a) C.A. Bunton, P. Silva, F. Castañeda, J. Mol. Struct. 921 (2009) 6;
(b) C.A. Bunton, F. Castañeda, J. Mol. Struct. 936 (2009) 132.
[12] (a) A.D. Abell, B.M. Clark, W.T. Robinson, Aust. J. Chem. 42 (1989) 1161;
(b) F. Castañeda, C.A. Terraza, C.A. Bunton, N.D. Gillit, M.T. Garland,
Phosphorus, Sulfur, Silicon 178 (2003) 1973;
The presence of a CH3 substituent on the tether group in 6 de-
creases the anti preference, relative to that in the other monoylides
(Table 3), and reduction of the rotational mobility of the nonylidic
ester group should decrease interference in a syn conformer.
4. Conclusions
(c) F. Castañeda, C.A. Terraza, M.T. Garland, C.A. Bunton, R.F. Baggio, Acta
Crystallogr. C57 (2001) 180;
In solution and the crystal the syn conformer is dominant
only in simple monoester triphenylphosphonium ylides with
hydrogen or small alkyl groups on the ylidic carbon, consistent
with interactions between anionoid acyl oxygen and cationoid
phosphorus. However, anti conformers are dominant when
nonylidic carboxylic ester groups are linked to the ylidic carbon
(d) F. Castañeda, P. Silva, M.T. Garland, A. Shirazi, C.A. Bunton, Phosphorus
Sulfur Silicon 184 (2009) 19.
[13] (a) M. Nishio, Y. Umezawa, M. Hirota, V. Takeuchi, Tetrahedron 51 (1995) 8665;
(b) M. Nishio, M. Hirota, Tetrahedron 45 (1989) 7201.
[14] A.P. Scott, L. Random, J. Phys. Chem. 100 (1996) 16502.
[15] F. Castañeda, P. Silva, M.T. Garland, A. Shirazzi, C.A. Bunton, J. Mol. Struct. 1004
(2011) 284.
[16] J.P. Snyder, Tetrahedron Lett. (1971) 215.
[17] G.R Desiraju, T. Steiner, The Weak Hidrogen Bond in Structural Chemistry and
Biology, Oxford University Press, 2001 (Chapter 3).
[18] (a) F. Castañeda, P. Silva, M.T. Garland, A. Shirazzi, C.A. Bunton, Phosphorus
Sulfur Silicon 184 (2009) 2152;
(b) F. Castañeda, P. Silva, C.A. Bunton, M.T. Garland, R.F. Baggio, Acta
Crystallogr. C64 (2008) 405.
[19] (a) A.E. Reid, R.B. Weinstock, F. Weinholl, J. Chem. Phys 83 (1985) 735;
(b) R.F.W. Bader, Chem. Rev. 91 (1991) 893.
by
a CH2 tether group which limits electronic effects and,
depending on sizes of the alkoxy groups, allows unfavorable
interactions between nonylidic and ylidic ester groups in syn
conformers. Conformations in solution are conveniently deter-
mined by examination of 1H and 13C NMR spectra and in the
crystal by X-ray crystallography. With large ester groups confor-
mations are the same in the crystal and in solution, but with
smaller groups there may be one conformer in the crystal which
is only dominant in solution. Molecular packing should be
important in the crystal, while the extent of preference for some
anti conformers in solution depends on sizes of the ester groups.
Computed bond lengths and angles of these ylides are similar to
values from X-ray crystallography. Stretching vibrations of ylidic
acyl groups in IR spectra are sensitive to conformation and com-
puted frequencies for anti groups are higher than for syn and
intensities of the latter are very weak, possibly due to interac-
tions with the triphenylphosphonium group.
[20] (a) F. Castañeda, C. Aliaga, C.A. Bunton, M.T. Garland, R. Baggio, Acta
Crystallogr. C61 (2005) 496;
(b) F. Castañeda, C. Jullian, C.A. Bunton, M.T. Garland, R. Baggio, Acta
Crystallogr. C63 (2007) 267;
(c) F. Castañeda, C. Aliaga, M.T. Garland, J. Hu, N.D. Gillitt, C.A. Bunton,
Phosphorus Sulfur Silicon 182 (2007) 151.
[21] (a) E.I. Eliel, S.H. Wilen, Stereochemistry of Organic Compounds, Wiley, New
York, 1994. pp. 635 and 641.;
(b) T.B. Grindley, Tetrahedron Lett. 23 (1982) 1757;
(c) C.E. Blom, H.H. Günthard, Chem. Phys. Lett. 84 (1981) 267;
(d) K.B. Wiberg, K.E. Laidig, J. Am. Chem. Soc. 100 (1987) 5935.
[22] F. Castañeda, G.I. Recabarren, J. Hu, N.D. Gillit, C.A. Bunton, Phosphorus Sulfur
Silicon 178 (2003) 2505.