Journal of the American Chemical Society
Page 4 of 15
lakis, G.; Grubbs, R. H. Chem. Rev. 2009, 110, 1746. (f) Samo-
yields and with only trace amounts of the E-isomer
jłowicz, C.; Bieniek, M.; Grela, K. Chem. Rev. 2009, 109, 3708.
(2) Binder, J. B.; Raines, R. T. Curr. Opin. Chem. Biol. 2008, 12,
767.
(3) (a) Leitgeb, A.; Wappel, J.; Slugovc, C. Polymer 2010, 51,
2927. (b) Sutthasupa, S.; Shiotsuki, M.; Sanda, F. Polym. J. 2010,
42, 905. (c) Liu, X.; Basu, A. J. Organomet. Chem. 2006, 691, 5148.
(4) Schrodi, Y.; Ung, T.; Vargas, A.; Mkrtumyan, G.; Lee, C. W.;
Champagne, T. M.; Pederson, R. L.; Hong, S. H. CLEAN Soil, Air,
Water 2008, 36, 669.
(5) Grubbs, R. H. Handbook of Metathesis; Wiley-VCH: Wein-
heim, 2003.
(6) Cossy, J.; Arseniyadis, S.; Meyer, C. Metathesis in Natural
Product Synthesis: Strategies, Substrates, and Catalysts, 1st ed.;
Wiley-VCH: Weinheim, Germany, 2010.
1
2
3
4
5
6
7
8
1
evident by H and 13C NMR spectroscopy (Table 3). It
is expected that this methodology will have applica-
tion to a variety of natural products and pharmaceuti-
cals, as well as for the synthesis of a unique class of
olfactory compounds, termed macrocyclic musks.
Many of these compounds contain a macrocyclic
backbone either featuring a Z-olefin, or bearing func-
tionality stereospecifically installed using
a Z-
9
olefin.5,6,19,21 In fact, 18 and 19 are both currently in
demand by the perfume industry (marketed as am-
brettolide and civetone, respectively).21
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) (a) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Müller, P.; Hov-
eyda, A. H. J. Am. Chem. Soc. 2009, 131, 7962. (b) Marinescu, S. C.;
Schrock, R. R.; Müller, P.; Takase, M. K.; Hoveyda, A. H. Organome-
tallics 2011, 30, 1780. (c) Yu, M.; Wang, C.; Kyle, A. F.; Jukubec, P.;
Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 479, 88.
(d) Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.; Hoveyda,
A. H. Nature 2011, 471, 461. (e) Flook, M. M.; Ng, V. W. L.;
Schrock, R. R. J. Am. Chem. Soc. 2011, 133, 1784. (f) Jiang, A. J.;
Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009,
131, 16630.
(8) (a) Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133,
8525. b) Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. J. Am.
Chem. Soc. 2011, 133, 9686. (c) Keitz, B. K.; Endo, K.; Patel, P. R.;
Herbert, M. B.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 134, 693.
(9) (a) Keitz, B. K.; Fedorov, A.; Grubbs, R. H. J. Am. Chem. Soc.
2012, 134, 2040. (b) Herbert, M. B.; Marx, V. M.; Pederson, R. L.;
Grubbs, R. H. Angew. Chem. Int. Ed. 2012, 52, 310. (c) Marx, V. M.;
Herbert, M. B.; Keitz, B. K.; Grubbs, R. H. J. Am. Chem. Soc. 2013,
10.1021/ja311241q.
(10) Liu, P.; Xu, X.; Dong, X.; Keitz, B. K.; Herbert, M. B.; Grubbs,
R. H.; Houk, K. N. J. Am. Chem. Soc. 2012, 134, 1464.
(11) Herbert, M. B.; Lan, Y.; Keitz, B. K.; Liu, P.; Endo, K.; Day, M.
W.; Houk, K. N.; Grubbs, R. H. J. Am. Chem. Soc. 2012, 134, 7861.
(12) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Muller, P.;
Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 20754.
(13) The two-step synthesis of 3 using AgOPiv proceeded in
48% overall yield, whereas the same sequence using NaOPiv
provided 3 in 60% overall yield.
(14) Reaction of 1 with excess sodium acetate also resulted in
complete conversion to 2, but with some catalysts the C-H activa-
tion failed to reach full conversion. Reducing the steric bulk of the
carboxylate even further by using sodium formate or sodium
bicarbonate results in no discernible conversion to the desired
chelated product.
(15) Complex 6 and the pivalate analogue of catalyst 8 were
isolated and assayed. As expected, they exhibited decreased ac-
tivity and stability compared to the corresponding nitrato-
complexes.
(16) Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H.
Organometallics 2006, 25, 5740.
(17) Catalyst 8 was not soluble in THF, thus all reactions using
8 were run in 1,2-dichloroethane (DCE). Experimentation with
catalyst 9 showed that using DCE in place of THF provided analo-
gous results (see Table 2).
(18) (a) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T.
E.; Scholl, M.; Choi, T. L.; Ding, S.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 2546. (b) Beach, N. J.; Lummiss, J. A. M.;
Bates, J. M.; Fogg, D. E. Organometallics 2012, 31, 2349.
(19) (a) Gradillas, A.; Pérez-Castells, J. Angew. Chem. Int. Ed.
2006, 45, 6086-6101. (b) Majumdar, K. C.; Rahaman, H.; Roy, B.
Curr. Org. Chem. 2007, 11, 1339-1365. (c) Diederich, F.; Stang, P.
J.; Tykwinski, R. R. Modern Supramolecular Chemistry: Strategies
for Macrocycle Synthesis. Wiley-VCH: Weinhem, 2008.
In summary, we have developed a new method to
effect the salt metathesis and C-H activation of Z-
selective ruthenium-based metathesis catalysts using
sodium carboxylates. This approach has been used to
synthesize several new stable chelated species, all of
which were found to be Z-selective in the homodi-
merizations of terminal olefin substrates. Notably,
installation of an N-2,6-diisopropylphenyl group on
the NHC led to significant improvements in activity
and selectivity in both the homodimerization reac-
tions of terminal olefins and industrially relevant
products. Near-perfect selectivity for the Z-olefin
(>95%) and unmatched TONs of up to 7400 were
observed while retaining the ease of use associated
with the ruthenium family of metathesis catalysts.
ASSOCIATED CONTENT
Experimental details and characterization data for all
compounds. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Dr. David VanderVelde is thanked for assistance with
NMR experimentation and analysis. This work was fi-
nancially supported by the NIH (R01-GM031332), the
NSF (CHE-1212767), and the NSERC of Canada (fellow-
ship to V.M.M.). Instrumentation on which this work was
carried out was supported by the NIH (NMR spectrome-
ter, RR027690). Materia, Inc. is thanked for its donation
of metathesis catalysts.
REFERENCES
(1) (a) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3013. (b)
Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (c)
Schrock, R. R. Chem. Rev. 2002, 102, 145. (d) Schrock, R. R.; Hov-
eyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592. (e) Vougiouka-
4
ACS Paragon Plus Environment