G Model
CCLET 3797 1–4
4
Z. Chen et al. / Chinese Chemical Letters xxx (2016) xxx–xxx
(c) S. Cacchi, G. Fabrizia, A. Goggiamani, Copper catalysis in the construction of
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
135
4. Conclusion
indole and benzo[b]furan rings, Org. Biomol. Chem. 9 (2011) 641–652;
(d) K. Hiroya, S. Itoh, T. Sakamoto, Mild and efficient cyclization reaction of 2-
ethynylaniline derivatives to indoles in aqueous medium, Tetrahedron 61 (2005)
10958–10964;
(e) S.C. Song, M.N. Huang, W.J. Li, X.H. Zhu, Y.Q. Wan, Efficient synthesis of indoles
from 2-alkynylaniline derivatives in water using a recyclable copper catalyst
system, Tetrahedron 71 (2015) 451–456;
(f) K. Hiroya, S. Itoh, T. Sakamoto, Development of an efficient procedure for
indole ring synthesis from 2-ethynylaniline derivatives catalyzed by Cu(II) salts
and its application to natural product synthesis, J. Org. Chem. 69 (2004) 1126–
1136.
136
137
138
139
140
141
142
143
In conclusion, we have developed a highly efficient method for
the synthesis of indoles via K2CO3 catalyzed cyclization reaction of
2-ethynyl-N-sulfonylanilides in water. It is noted that the present
procedure offers several advantages, including the absence of
transition metal, without the use of excess of strong base, green
solvent, the ease of product isolation and cleaner reactions.
Moreover, the recovery and reusability of the catalytic system
were also investigated, and it could be reused at least six times.
[5] (a) A. Chanda, V.V. Fokin, Organic synthesis ‘‘On Water’’, Chem. Rev. 109 (2009)
725–748;
(b) R.N. Butler, A.G. Coyne, Water: nature’s reaction enforcer – comparative
effects for organic synthesis ‘‘In-Water’’ and ‘‘On-Water’’, Chem. Rev. 110
(2010) 6302–6337;
(c) M.O. Simon, C.J. Li, Green chemistry oriented organic synthesis in water,
Chem. Soc. Rev. 41 (2012) 1415–1427.
144
Acknowledgments
145
146
147
This work was supported by the National Natural Science
Foundation of China (No. 21402137) and Xinmiao Talents Program
of Zhejiang Province (No. 2016R430021).
[6] (a) A. Carpita, A. Ribecai, Microwave-assisted synthesis of indole-derivatives via
cycloisomerization of 2-alkynylanilines in water without added catalysts, acids,
or bases, Tetrahedron Lett. 50 (2009) 6877–6881;
(b) A. Carpita, A. Ribecai, P. Stabile, Microwave-assisted synthesis of indole- and
azaindole-derivatives in water via cycloisomerization of 2-alkynylanilines and
alkynylpyridinamines promoted by amines or catalytic amounts of neutral or
basic salts, Tetrahedron 66 (2010) 7169–7178.
148
Appendix A. Supplementary data
149
150
Supplementary data associated with this article can be found, in
[7] Z.N. Jin, H.J. Jiang, J.S. Wu, et al., Synthesis of 2-heterocyclic substituted pyrro-
lidines by copper-catalyzed domino three-component decarboxylative coupling
and cyclization reactions, Tetrahedron Lett. 56 (2015) 2720–2723.
[8] F. Wang, H. Liu, L.F. Cun, et al., Asymmetric transfer hydrogenation of ketones
catalyzed by hydrophobic metal-amido complexes in aqueous micelles and
vesicles, J. Org. Chem. 70 (2005) 9424–9429.
[9] (a) J.J. Wang, N. Soundarajan, N. Liu, K. Zimmermann, B.N. Naidu, Highly conver-
gent synthesis of a rebeccamycin analog with benzothioeno(2,3-a)pyrrolo(3, 4-
c)carbazole as the aglycone, Tetrahedron Lett. 46 (2005) 907–910;
(b) A.L. Rodriguez, C. Koradin, W. Dohle, P. Knochel, Versatile indole synthesis by
a 5-endo-dig cyclization mediated by potassium or cesium bases, Angew. Chem.
Int. Ed. 39 (2000) 2488–2490;
151
References
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
[1] (a) M. Lounasmaa, A. Tolvanen, Simple indole alkaloids and those with a nonrear-
ranged monoterpenoid unit, Nat. Prod. Rep. 17 (2000) 175–191;
(b) S. Hibino, T. Choshi, Simple indole alkaloids and those with a nonrearranged
monoterpenoid unit, Nat. Prod. Rep. 19 (2002) 148–180;
(c) M. Somei, F. Yamada, Simple indole alkaloids and those with a nonrearranged
monoterpenoid unit, Nat. Prod. Rep. 21 (2004) 278–311;
(d) N.E. Golantsov, A.A. Festa, A.V. Karchava, M.A. Yurovskaya, Marine indole
alkaloids containing an 1-(indol-3-yl)ethane-1,2-diamine fragment (review),
Chem. Heterocycl. Compd. 49 (2013) 203–225.
(c) C. Koradin, W. Dohle, A.L. Rodriguez, B. Schmid, P. Knochel, Synthesis of
polyfunctional indoles and related heterocycles mediated by cesium and potas-
sium bases, Tetrahedron 59 (2003) 1571–1587;
(d) A.H. Stoll, P. Knochel, Preparation of fully substituted anilines for the synthe-
sis of functionalized indoles, Org. Lett. 10 (2008) 113–116;
(e) Y. Kondo, S. Kojima, T. Sakamoto, General and facile synthesis of indoles with
oxygen-bearing substituents at the benzene moiety, J. Org. Chem. 62 (1997)
6507–6511.
[2] (a) E. Fischer, F. Jourdan, Ueber die hydrazine der brenztraubensa¨ure, Ber.
Deutsch. Chem. Gesell. 16 (1883) 2241–2245;
(b) E. Fischer, O. Hess, Synthese von indolderivaten, Ber. Deutsch. Chem. Gesell.
17 (1884) 559–568.
[3] (a) G.R. Humphrey, J.T. Kuethe, Practical methodologies for the synthesis of
indoles, Chem. Rev. 106 (2006) 2875–2911;
[10] D.Y. Li, K.J. Shi, X.F. Mao, et al., Selective cyclization of alkynols and alkynylamines
catalyzed by potassium tert-butoxide, Tetrahedron 70 (2014) 7022–7031.
[11] B. List, Proline-catalyzed asymmetric reactions, Tetrahedron 58 (2002) 5573–
5590.
[12] (a) K. Hiroya, S. Itoh, M. Ozawa, Y. Kanamori, T. Sakamoto, Efficient construction
of indole rings from 2-ethynylaniline derivatives catalyzed by copper(II) salts and
its application to the tandem cyclization reactions, Tetrahedron Lett. 43 (2002)
1277–1280;
(b) R. Vicente, Recent advances in indole syntheses: new routes for a classic
target, Org. Biomol. Chem. 9 (2011) 6469–6480;
(c) S. Cacchi, G. Fabrizi, Update 1 of: synthesis and functionalization of indoles
through palladium-catalyzed reactions, Chem. Rev. 111 (2011) PR215–PR283;
(d) Y. Oda, N. Matsuyama, K. Hirano, T. Satoh, M. Miura, Dehydrogenative
synthesis of C3-azolylindoles via copper-promoted annulative direct coupling
of o-alkynylanilines, Synthesis 44 (2012) 1515–1520.
(b) K.C. Majumdar, S. Samanta, B. Chattopadhyay, A convenient synthesis of
pyrrolopyridines and 2-substituted indoles by gold-catalyzed cycloisomerization,
Tetrahedron Lett. 49 (2008) 7213–7216;
(c) A. Yasuhara, Y. Kanamori, M. Kaneko, et al., Convenient synthesis of 2-
substituted indoles from 2-ethynylanilines with tetrabutylammonium fluoride,
J. Chem. Soc. Perkin Trans. 1 (1999) 529–534.
[4] (a) L.B. Huang, M. Arndt, K. Gooßen, H. Heydt, L.J. Gooßen, Late transition metal-
catalyzed hydroamination and hydroamidation, Chem. Rev. 115 (2015) 2596–
2697;
(b) M. Platon, R. Amardeil, L. Djakovitch, J.C. Hierso, Progress in palladium-based
catalytic systems for the sustainable synthesis of annulated heterocycles: a focus
on indole backbones, Chem. Soc. Rev. 41 (2012) 3929–3968;
Please cite this article in press as: Z. Chen, et al., Facile synthesis of indoles by K2CO3 catalyzed cyclization reaction of 2-ethynylanilines