Chemical Science
Edge Article
A. K. Miller and D. Trauner, Org. Lett., 2005, 7, 3425.
Cyclopentenones bearing various oxygen substituents at
the g-position have been used extensively in prostaglandin
synthesis; for examples, see R. Noyori and M. Suzuki,
Angew. Chem. Int. Ed. Engl., 1984, 23, 847 and references
therein.
Chem. Sci., 2010, 1, 427. For the allylic alkylation of
substituted,
chiral
pool-derived
cyclohexenone
electrophiles, see: (b) M. Shan and G. A. O'Doherty, Org.
Lett., 2010, 12, 2986; for the kinetic resolution of
cyclopentenone electrophiles, see: (c) K. Ulbrin,
P. Kreitmeier, T. Vilaivan and O. Reiser, J. Org. Chem.,
2013, 78, 4202.
´
3 For examples, see (a) P. Bayon, G. Marjanet, G. Toribio,
´
R. Alibes, P. de March, M. Figueredo and J. Font, J. Org. 12 (a) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 1999, 121,
Chem., 2008, 73, 3486; (b) A. Demir and O. Sesenoglu, Org.
Lett., 2002, 4, 2021; (c) J. E. Audia, L. Boisvert, A. D. Patten,
3543; (b) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 2003,
125, 3090.
A. Villalobos and S. J. Danishefsky, J. Org. Chem., 1989, 54, 13 The absolute stereochemistry of compounds 4, 19, and
3738; (d) D. R. Boyd, N. D. Sharma, M. Kaik,
P. B. A. McIntyre, P. J. Stevenson and C. C. R. Allen, Org.
Biomol. Chem., 2012, 10, 2774; (e) T. Kumaraguru and
N. W. Fadnavis, Tetrahedron: Asymmetry, 2012, 23, 775, and
references therein; see also ref. 2d and 2h.
ent-2 was determined by comparison of their optical
rotations to literature values, and the stereochemistry
of the remaining Pd-AA products is assigned by
analogy.
14 (a) K. C. Nicolaou, A. A. Estrada, M. Zak, S. H. Lee and
B. S. Sana, Angew. Chem., Int. Ed., 2005, 44, 1378; (b)
4 As examples, see ref. 2c and 2f for the use of ent-1 and 1,
respectively.
´
R. L. E. Furlan and E. G. Mata, in Encyclopedia of Reagents
5 (a) B. M. Trost, Science, 1991, 254, 1471; (b) B. M. Trost,
Angew. Chem., Int. Ed., 1995, 34, 259.
6 P. A. Wender, V. A. Verma, T. J. Paxton and T. H. Pillow, Acc.
Chem. Res., 2008, 41, 40.
7 For examples of catalytic, asymmetric approaches, see (a)
G. Dickmeiss, V. De Sio, J. Udmark, T. B. Poulsen,
for Organic Synthesis, John Wiley & Sons, Ltd. 2010.
15 The absolute stereochemistry of the alcohol products was
determined by comparison of their optical rotations to
literature values, and the % ee was determined by chiral
HPLC aer their conversion to benzoates 16–18 (BzCl,
pyridine; for details, see the ESI†).
V. Marcos and K. A. Jørgensen, Angew. Chem., Int. Ed., 16 For reviews covering epoxyquinoid natural products,
2009, 48, 6650; (b) S. Staben, X. Linghu and F. D. Toste,
J. Am. Chem. Soc., 2006, 128, 12658; (c) C. F. Nising,
including past syntheses, natural origins, and biological
activities, see: (a) J. Marco-Contelles, M. T. Molina and
S. Anjum, Chem. Rev., 2004, 104, 2857; (b) K. Ogasawara,
J. Synth. Org. Chem., Jpn., 1999, 57(11), 957; (c) M. Shoji
and Y. Hayashi, Eur. J. Org. Chem., 2007, 3783. For more
recent syntheses, see: (d) J. Li, S. Park, R. L. Miller and
D. Lee, Org. Lett., 2009, 11, 571; (e) D. M. Pinkerton,
M. G. Banwell and A. C. Willis, Aust. J. Chem., 2009, 62,
1639; (f) D. M. Pinkerton, M. G. Banwell and
A. C. Willis, Org. Lett., 2009, 11, 4290, and references
therein.
¨
¨
U. K. Ohnemuller and S. Brase, Synthesis, 2006, 2643; (d)
H.-J. Gais, O. Bondarev and R. Hetzer, Tetrahedron Lett.,
2005, 46, 6279; (e) S. Hashiguchi, A. Fujii, K.-J. Haack,
K. Matsumura, T. Ikariya and R. Noyori, Angew. Chem., Int.
Ed., 1997, 36, 288; (f) T. Iida, N. Yamamoto, H. Sasai and
M. Shibasaki, J. Am. Chem. Soc., 1997, 119, 4783; (g)
T. Fukuda and T. Katsuki, Tetrahedron Lett., 1996, 37, 4389;
(h) J. L. Leighton and E. N. Jacobsen, J. Org. Chem., 1996,
61, 389; (i) K. Hiroya, Y. Kurihara and K. Ogasawara,
Angew. Chem., Int. Ed., 1995, 34, 2287; (j) S. Chang, 17 J. B. Evarts, Jr and P. L. Fuchs, Tetrahedron Lett., 1999, 40,
R. M. Heid and E. N. Jacobsen, Tetrahedron Lett., 1994, 35, 2703.
669; (k) M. Kitamura, K. Manabe and R. Noyori, 18 T. Tachihara and T. Kitahara, Tetrahedron, 2003, 59,
Tetrahedron Lett., 1987, 28, 4719; see also M. C. Willis,
J. Chem. Soc., Perkin Trans. 1, 1999, 1765.
1773.
19 Dibenzoate 14 is readily prepared in one step from 1,3-
¨
8 B. M. Trost, J. Richardson and K. Yong, J. Am. Chem. Soc.,
2006, 128, 2540.
9 Nitronate 9 is prepared by the oxidation of oxime 12 with
cyclohexadiene (J.-E. Backvall, K. L. Granberg, R. B.
Hopkins, Acta Chem. Scand., 1990, 44, 492); for a multi-
gram synthesis, see the ESI.†
´
NaBO3 in AcOH followed by in situ deprotonation with 20 G. Toribio, G. Marjanet, R. Alibes, P. De March, J. Font,
´
KHMDS, thus enabling this recycling.
P. Bayon and M. Figueredo, Eur. J. Org. Chem., 2011,
10 The pH 7 quench may be the most signicant of these
1534.
modications: as the workup and isolation associated with 21 K. C. Nicolaou, D. L. F. Gray, T. Montagnon and
larger scale reaction necessarily takes more time S. T. Harrison, Angew. Chem., Int. Ed., 2002, 41, 996.
a
compared to a smaller scale reaction, an incompletely 22 T. Diao and S. Stahl, J. Am. Chem. Soc., 2011, 133, 14566.
quenched larger scale reaction mixture may translate to a 23 The reaction of 39 with excess IBX and cat. p-toluenesulfonic
longer period of exposure to reactive impurities such as
base. The results listed in Fig. 3 were obtained using this
modied reaction procedure (>1 mmol scale). For
complete experimental details, see the ESI.†
acid (DMSO, 65 ꢀC, 24 h) afforded 41, but in highly variable
yields. For further discussion, see the ESI;† see also
K. C. Nicolaou, T. Montagnon, P. S. Baran and Y.-L. Zhong,
J. Am. Chem. Soc., 2002, 124, 2245.
11 For
a
review of allylic alkylation with heteroatom 24 T. Mukaiyama, J.-i. Matsuo and H. Kitagawa, Chem. Lett.,
2000, 1250.
nucleophiles, see (a) B. M. Trost, T. Zhang and J. D. Sieber,
Chem. Sci.
This journal is © The Royal Society of Chemistry 2014