Journal of the American Chemical Society
Communication
on intact azides is at least 15%, suggesting that the cycloaddition
reaction may proceed quite readily on the surface.
ACKNOWLEDGMENTS
■
We acknowledge financial support from the Danish National
Research Foundation, The Danish Council for Independent
Research, Natural Sciences, the Marie-Curie ITN SMALL, and
the Alexander von Humboldt-Foundation.
The reaction mechanism for the liquid-phase CuAAC reaction
involves a Cu(I) ion which forms a Cu-acetylide with the
terminal alkyne group under replacement of the alkyne proton.21
The regioselectivity toward the 1,4-regiosiomer results from
preferential binding of the azide nitrogen closest to the residue to
this Cu atom, aligning the alkyne and azide groups with their
residues pointing in opposite directions. In a later reaction step,
the Cu atom in the intermediate is replaced by a proton from the
solvent. The activation energy barrier for this CuAAC reaction
mechanism has been calculated to 0.65 eV.21 An equivalent on-
surface scenario could be envisioned involving free Cu adatoms
released thermally (or by interaction with alkynes) from Cu step-
edges. Here, the Cu surface would have to replace the solvent as
reservoir for released hydrogen, although it is noted that
recombinant hydrogen desorption from Cu(111) occurs around
rt,32 limiting the lifetime of H species on the surface. If, for some
reason, the CuAAC catalyzed channel is blocked on the surface, a
direct reaction should be considered. The energy barrier for the
(gas-phase) direct reaction mechanism has been calculated to
∼1.1 eV,21 i.e., within a few tenths of an eV from rendering it
relevant at rt. The observed likely di-σ bonding of the alkyne to
the Cu(111) substrate is somewhat analogous to the “concerted
mechanism” involving formation of a Cu(I) π complex with the
alkyne triple bond21 and could possibly help to lower the barrier
for a direct (surface-catalyzed) reaction path. While the liquid-
phase uncatalyzed reaction often produces a mixture of 1,5- and
1,4-regioisomers, we only find evidence for the 1,4-regioisomer
in the STM data, apparently pointing toward the CuAAC
mechanism. However, when we perform liquid-phase synthesis
with the protocol of the uncatalyzed path, we also obtain only the
1,4-product. This regioselectivity is ascribed to steric hindrance
making a prereaction arrangement with both bulky residues to
the same side of the reacting azide and alkyne groups
inaccessible. Steric hindrance will be even more important in a
surface-confined situation. To fully establish the on-surface
reaction path, further modeling will be required.
REFERENCES
■
(1) Gourdon, A. Angew. Chem. Int. Ed. 2008, 47, 6950.
(2) Mendez, J.; Lopez, M. F.; Martin-Gago, J. A. Chem. Soc. Rev. 2011,
40, 4578.
(3) Franc, G.; Gourdon, A. Phys. Chem. Chem. Phys. 2011, 13, 14283.
(4) Elemans, J. A. A. W.; Lei, S. B.; De Feyter, S. Angew. Chem. Int. Ed.
2009, 48, 7298.
(5) Barth, J. V. Annu. Rev. Phys. Chem. 2007, 58, 375.
(6) Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.;
Laegsgaard, E.; Besenbacher, F.; Linderoth, T. R. Angew. Chem. Int. Ed.
2008, 47, 4406.
(7) Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.;
Strunskus, T.; Woll, C.; Dahlbom, M.; Hammer, B.; Laegsgaard, E.;
̈
Besenbacher, F.; Linderoth, T. R. Angew. Chem. Int. Ed. 2007, 46, 9227.
(8) Gutzler, R.; Walch, H.; Eder, G.; Kloft, S.; Heckl, W. M.; Lackinger,
M. Chem. Commun. 2009, 4456.
(9) Faury, T.; Clair, S.; Abel, M.; Dumur, F.; Gigmes, D.; Porte, L. J.
Phys. Chem. C 2012, 116, 4819.
(10) Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.;
Hecht, S. Nat. Nanotechnol. 2007, 2, 687.
(11) Zwaneveld, N. A. A.; Pawlak, R.; Abel, M.; Catalin, D.; Gigmes,
D.; Bertin, D.; Porte, L. J. Am. Chem. Soc. 2008, 130, 6678.
(12) Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.;
Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L.;
Mullen, K.; Fasel, R. Nature 2010, 466, 470.
(13) Fesser, P.; Iacovita, C.; Wackerlin, C.; Vijayaraghavan, S.; Ballav,
N.; Howes, K.; Gisselbrecht, J. P.; Crobu, M.; Boudon, C.; Stohr, M.;
̈
Jung, T. A.; Diederich, F. Chem. Eur. J. 2011, 17, 5246.
(14) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed.
2001, 40, 2004.
(15) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.
(16) Voigt, N. V.; Torring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek,
J. B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher,
F.; Gothelf, K. V. Nat. Nanotechnol. 2010, 5, 200.
(17) Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun. 2007,
28, 15.
(18) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128.
(19) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem. Int. Ed. 2002, 41, 2596.
In conclusion, we have demonstrated that a cycloaddition can
be performed between alkyne and azide reactants adsorbed on a
Cu(111) surface under UHV conditions at rt to produce the 1,4-
triazole click reaction product. The reaction has a low apparent
yield, because a sizable fraction of the deposited azide molecules
degrade on the surface. The reaction itself, however, proceeds
readily provided that intact reactants are available on the surface.
For the azide−alkyne cycloaddition reaction to be useful for on-
surface synthesis of organized covalently bonded surface
structures, conditions must be identified, e.g., molecular
structure, substituent groups, substrates, adsorption temper-
atures, where the azide is stable upon adsorption, yet maintains
sufficient reactivity.
(20) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002,
67, 3057.
(21) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman,
L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210.
(22) Prins, L. J.; Scrimin, P. Angew. Chem. Int. Ed. 2009, 48, 2288.
(23) Das, M. R.; Wang, M.; Szunerits, S.; Gengembre, L.;
Boukherroub, R. Chem. Commun. 2009, 2753.
(24) Watson, M. A.; Lyskawa, J.; Zobrist, C.; Fournier, D.; Jimenez, M.;
Traisnel, M.; Gengembre, L.; Woisel, P. Langmuir 2010, 26, 15920.
(25) Stoddart, J. F.; Paxton, W. F.; Spruell, J. M. J. Am. Chem. Soc. 2009,
131, 6692.
(26) Bohringer, M.; Morgenstern, K.; Schneider, W. D.; Berndt, R.;
̈
ASSOCIATED CONTENT
■
Mauri, F.; De Vita, A.; Car, R. Phys. Rev. Lett. 1999, 83, 324.
(27) Iucci, G.; Carravetta, V.; Altamura, P.; Russo, M. V.; Paolucci, G.;
Goldoni, A.; Polzonetti, G. Chem. Phys. 2004, 302, 43.
(28) Sohn, Y.; Wei, W.; White, J. M. J. Phys. Chem. C 2008, 112, 18531.
(29) Ciampi, S.; Bocking, T.; Kilian, K. A.; James, M.; Harper, J. B.;
Gooding, J. J. Langmuir 2007, 23, 9320.
(30) Collman, J. P.; Devaraj, N. K.; Eberspacher, T. P. A.; Chidsey, C.
E. D. Langmuir 2006, 22, 2457.
(31) Guan, B.; Ciampi, S.; Le Saux, G.; Gaus, K.; Reece, P. J.; Gooding,
S
* Supporting Information
Experimental details and characterization data. This material is
AUTHOR INFORMATION
■
Corresponding Author
J. J. Langmuir 2011, 27, 328.
Notes
(32) Kammler, T.; Kuppers, J. J. Chem. Phys. 1999, 111, 8115.
̈
The authors declare no competing financial interest.
2139
dx.doi.org/10.1021/ja312303a | J. Am. Chem. Soc. 2013, 135, 2136−2139