Page 3 of 3
ChemComm
when 43·Fe2·(ClO4)4 is formed as before, diffusion NMR and
ligand flexibility becomes limited, precluding the formation of
ESIꢀMS confirmed the presence of the Fe2L3 complex. While 40 the mismatched mesocate isomer. Further experiments on the
larger M4L6 adducts are observed for ligand 4 in small amounts in
the ESIꢀMS, they are not observed in solution. In this case, only
one set of peaks is observed in the 1H NMR spectrum, indicating
that only one diastereomer (the more favorable matched ꢁꢁ/ΛΛ
complex) is formed. The absence of the mesotopic assembly can
be explained by strain.8,13 The presence of large achiral groups on
the interior of the cage increases the strain upon complexation
control of assembly via internal functionalization are underway.
5
Notes and references
Department of Chemistry, University of California – Riverside,
Riverside, California 92521, USA. E-mail: richard.hooley@ucr.edu;
45 Tel: +1 951-827-4924
† Electronic Supplementary Information (ESI) available: Full
experimentals
and
NMR/ESIꢀMS
characterization.
See
10 and disfavors the mesocate (see ESI).
DOI: 10.1039/b000000x/
The effect of the internal functionality on the selectivity of
assembly can be tested by increasing the size of the internal
groups. Ligand 5 displays larger internal functions than 4, but
those groups can still move into the "gaps" between ligands. If
15 the benzyl groups in 43·Fe2·(ClO4)4 are flexible, the addition of a
bulky tꢀbutyl group (as in preligand E) should have relatively
little effect, and the Fe2L3 helix should still form. If the groups
are not able to point outside of the capsule, then the Fe2L3 would
be disfavored, likely giving rise to a coordination polymer.
20 Characterization by 1HꢀNMR and ESIꢀMS confirmed that E
formed a single diastereomer of 53·Fe2·(ClO4)4 (Figure 4d). As
might be expected, 53·Fe2·(ClO4)4 also selected for the homotopic
assembly, as only one set of peaks were observed. Larger, more
rigid preligand F is incapable of motion to allow assembly: no
25 discrete 63·Fe2·(ClO4)4 complexes are formed from preligand F,
only a mostly insoluble coordination polymer.
†† The authors wish to thank Dr. Dan Borchardt and Prof. Cynthia Larive
50 for assistance with DOSYꢀNMR, Ron New for mass spectral analysis and
the National Science Foundation (CHEꢀ1151773) for research support.
1
2
3
R. Chakrabarthy, P. S. Mukherjee and P. J. Stang, Chem. Rev., 2011,
111, 6810.
S. R. Halper and S. M. Cohen, Angew. Chem., Int. Ed., 2004, 43,
2385.
(a) M. Fujita, J. Yazaki and K. Ogura, J. Am. Chem. Soc., 1990, 112,
5645; (b) R. W. Troff, R. Hovorka, T. Weilandt, A. Lützen, M.
Cetina, M. Nieger, D. Lentz, K. Rissanen and C. A. Schalley, Dalton
Trans., 2012, 41, 8410.
55
60
65
70
75
4
(a) Z. Li, N. Kishi, K. Hasegawa, M. Akita and M. Yoshizawa,
Chem. Commun., 2011, 47, 8605; (b) V. M. Cangelosi, L. N.
Zakharov and D. W. Johnson, Angew. Chem., Int. Ed., 2010, 49,
1248.
5
6
V. E. Campbell and J. R. Nitschke, Synlett, 2008, 20, 3077.
M. Wang, YꢀR. Zheng, K. Ghosh and P. J. Stang, J. Am. Chem. Soc.,
2010, 132, 6282.
7
8
9
D. L. Caulder and K. N. Raymond, Angew. Chem., Int. Ed. Engl.,
1997, 36, 1440.
W. Meng, J. K. Clegg, J. D. Thoburn and J. R. Nitscke, J. Am. Chem.
Soc., 2011, 133, 13652.
(a) P. Mal, B. Breiner, K. Rissanen and J. R. Nitschke, Science, 2009,
324, 1697; (b) R. W. Saalfrank, H. Maid, A. Scheurer, Angew.
Chem., Int. Ed., 2008, 47, 8794.
10 (a) T. Beissel, R. E. Powers, T. N. Parac and K. N. Raymond, J. Am.
Chem. Soc., 1999, 121, 4200; (b) R. L. Paul, S. P. Argent, J. C.
Jeffery, L. P. Harding, J. M. Lynam and M. D. Ward, Dalton Trans.,
2004, 3453.
11 D. Fiedler, D. H. Leung, R. G. Bergman and K. N. Raymond, Acc.
Chem. Res., 2005, 38, 351.
80 12 M. Scherer, D. L. Caulder, D. W. Johnson and K. N. Raymond,
Angew. Chem., Int. Ed., 1999, 38, 1587.
13 (a) E. J. Enemark and T. D. P. Stack, Angew. Chem., Int. Ed. Engl.,
1995, 34, 996; (b) N. Ousaka, S. Grunder, A. M. Castilla, A. C.
Whalley, J. F. Stoddart and J. R. Nitschke, J. Am. Chem. Soc., 2012,
85
90
134, 15528; (c) M. Albrecht, S. Burk and P. Weis, Synthesis, 2008,
18, 2963; (d) A. Lützen, M. Hapke, J. GriepꢀRaming, D. Haase and
W. Saak, Angew. Chem., Int. Ed., 2002, 41, 2086.
14 (a) D. C. Caskey, T. Yamamoto, C. Addicott, R. K. Shoemaker, J.
Vacek, A. M. Hawkridge, D. C. Muddiman, G. S. Kottas, J. Michl
and P. J. Stang, J. Am. Chem. Soc., 2008, 130, 7620; (b) S. Sato, Y.
Ishido and M. Fujita, J. Am. Chem. Soc., 2009, 131, 6064; (c) A. M.
Johnson, O. Moshe, A. S. Gamboa, B. W. Langloss, J. F. K.
Limtiaco, C. K. Larive and R. J. Hooley, Inorg. Chem., 2011, 50,
9430.
Fig. 4 Stereoselective Assembly: a) minimized structure of the observed
53·Fe2 homotopic isomer (SPARTAN). Labeled NMR Spectra (CD3CN,
400 MHz, 298K) of b) 23·Fe2·(ClO4)4; c) 33·Fe2·(ClO4)4; d)
30 53·Fe2·(ClO4)4, illustrating the mixture of isomers. Blue dots correspond
to homotopic assemblies, red dots correspond to the mesotopic species.
95 15 P. Mal and J. R. Nitschke, Chem. Commun., 2010, 46, 2417.
16 A. C. G. Hotze, N. J. Hodges, R. E. Hayden, C. SanchezꢀCan, C.
Paines, N. Male, MꢀK. Tse, C. M. Bunce, J. K. Chipman and M. J.
Hannon, Chem. Biol., 2008, 15, 1258.
17 T. Ide, D. Takeuchi and K. Osakada, Chem. Commun., 2012, 48, 278.
100 18 M. J. Hannon, C. L. Painting, A. Jackson, J. Hamblin and W.
Errington, Chem. Commun., 1997, 1807.
In conclusion, we have reported the synthesis of internally
functionalized Vꢀshaped iminopyridine ligands and their
multicomponent selfꢀassembly properties in the presence of
35 Fe(II) salts. Increased ligand rigidity generally favors
stereocontrol in Fe(II)ꢀiminopyridine clusters, and this can be
exploited by applying steric strain to the interior of the cavity.
As bulky groups are added to the interior of these cages, the
19 J. R. Nitschke, M. Hutin and G. Bernardinelli, Angew. Chem., Int.
Ed., 2004, 43, 6724.
20 R. A. Bilbeisi, J. K. Clegg, N. Elgrishi, X. de Hatten, M. Devillard,
105
B. Breiner, P. Mal and J. R. Nitschke, J. Am. Chem. Soc., 2012, 134,
5110.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3