686
D. Y. Duveau et al. / Bioorg. Med. Chem. Lett. 23 (2013) 682–686
2. Roskoski, R. Biochem. Biophys. Res. Commun. 2005, 337, 1.
3. Kurzrock, R.; Kantarjian, H. M.; Druker, B. J.; Talpaz, M. Ann. Intern. Med. 2003,
138, 819.
4. Belloc, F.; Airiau, K.; Jeanneteau, M.; Garcia, M.; Guerin, E.; Lippert, E.; Moreau-
Gaudry, F.; Mahon, F. X. Leukemia 2009, 23, 679.
analogues showed increased inhibitory activities to mutant V560G
(nilotinib (1) and 2a–c <10 nM). Val560 lies in the juxtamembrane
region and a replacement of Val to Gly may possibly make the juxt-
amembrane loop more flexible allowing more facile coverage of
the solvent-exposed region and further stabilize inhibitor binding.
In conclusion, the influence of the trifluoromethyl group in the
activity profile of nilotnib was investigated, by synthesizing ana-
logues of nilotinib bearing a fluorine (2b), a methyl group (2c), or
no substituent (2a) in that position. Presence of a trifluoromethyl
group in nilotinib (1), and of a methyl group in 2c, leads to tight fit-
ting in Abl, and probably in DDR2 as well. Furthermore, the trifluo-
romethyl group allows van der Waals interactions between one of
the fluorine and the one of the carbonyl backbone located in the
hydrophobic pocket adjacent to the hinge region in Abl, thus fur-
ther enhancing the selectivity of nilotnib toward this kinase. On
the other hand, the corresponding hydrophobic pocket found in
Kit is larger in size, accommodating each one of the four com-
pounds studied. However, the role juxtamembrane region in Kit
may account for the higher binding affinity of 2a and 2b toward
Kit. Fluorinated analogue 2b possesses a good inhibitory activity
toward Kit and FLT3, and binds tightly to those two kinases. Since
kinases possess a high degree of homology, taking advantage of the
subtle difference between a methyl and a trifluoromethyl group, or
between a proton and fluorine may allow tuning of the pharmaco-
logical profile of kinase inhibitors.
5. Manley, P. W.; Cowan-Jacob, S. W.; Fendrich, G.; Mestan, J. Blood 2005, 106,
940A.
6. Olsen, J. A.; Banner, D. W.; Seiler, P.; Wagner, B.; Tschopp, T.; Obst-Sander, U.;
Kansy, M.; Müller, K.; Diederich, F. ChemBioChem 2004, 5, 666.
7. Kimura, S.; Naito, H.; Segawa, H.; Kuroda, J.; Yuasa, T.; Sato, K.; Yokota, A.;
Kamitsuji, Y.; Kawata, E.; Ashihara, E.; Nakaya, Y.; Naruoka, H.; Wakayama, T.;
Nasu, K.; Asaki, T.; Niwa, T.; Hirabayashi, K.; Maekawa, T. Blood 2005, 106,
3948.
8. Weisberg, E.; Choi, H. G.; Ray, A.; Barrett, R.; Zhang, J.; Sim, T.; Zhou, W.;
Seeliger, M.; Cameron, M.; Azam, M.; Fletcher, J. A.; Debiec-Rychter, M.;
Mayeda, M.; Moreno, D.; Kung, A. L.; Janne, P. A.; Khosravi-Far, R.; Melo, J. V.;
Manley, P. W.; Adamia, S.; Wu, C.; Gray, N.; Griffin, J. D. Blood 2010, 115, 4206.
9. Wilhelm, S. M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.;
Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.;
Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.;
Voznesensky, A.; Riedl, B.; Post, L. E.; Bollag, G.; Trail, P. A. Cancer Res. 2004, 64,
7099.
10. Weisberg, E.; Manley, P.; Mestan, J.; Cowan-Jacob, S.; Ray, A.; Griffin, J. D. Br. J.
Cancer 2006, 94, 1765.
11. Altman, R. A.; Koval, E. D.; Buchwald, S. L. J. Org. Chem. 2007, 72, 6190.
12. Altman, R. A.; Buchwald, S. L. Org. Lett. 2006, 8, 2779.
13. Ueda, S.; Su, M. J.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 700.
14. Analogue 2a: 1H NMR (400 MHz, DMSO-d6) d 10.54 (s, 1H), 9.53 (s, 1H), 9.28 (s,
1H), 9.17 (s, 1H), 8.70 (d, J = 4.8 Hz, 1H), 8.55 (d, J = 5.1 Hz, 1H), 8.48 (d,
J = 8.0 Hz, 1H), 8.32 (t, J = 2.1 Hz, 1H), 8.29 (d, J = 1.9 Hz, 1H), 7.95 (s, 1H), 7.81
(d, J = 8.4 Hz, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.61 (t, J = 8.1 Hz, 1H), 7.58–7.52 (m,
1H), 7.49 (d, J = 5.1 Hz, 1H), 7.47 (m, 1H), 7.44 (d, J = 8.4 Hz, 1H), 2.36 (s, 3H),
2.36 (s, 3H).
Analogue 2b: 1H NMR (400 MHz, DMSO-d6) d ppm 10.69 (s, 1H), 9.52 (d,
J = 1.8 Hz, 1H), 9.30 (d, J = 1.6 Hz, 1H), 9.19 (s, 1 H), 8.72 (dd, J = 4.8, 1.5 Hz, 1H),
8.56 (d, J = 5.1 Hz, 1H), 8.51 (ddd, J = 8.2, 2.0, 1.8 Hz, 1H), 8.30 (d, J = 1.8 Hz, 1H),
8.12 (m, 1H), 7.95(m, 1H), 7.79 (m, 1H), 7.75 (dd, J = 8.0, 2.0 Hz, 1H), 7.59 (dd,
J = 8.1, 4.8 Hz, 1H), 7.50 (d, J = 5.3 Hz, 1H), 7.49 (dt, J = 9.4, 2.2 Hz, 1H), 7.45 (d,
J = 8.2 Hz, 1H), 2.36 (s, 3H), 2.35 (s, 3H).
Acknowledgments
We thank Jim Bougie, Thomas Daniel and William Leister for
compound purification, as well as Paul Shinn, Danielle VanLeer
and Christopher LeClair for assistance with compound manage-
ment. This research was supported by the Molecular Libraries Ini-
tiative of the National Institutes of Health Roadmap for Medical
Research Grant U54HG005033 and the Intramural Research Pro-
gram of the National Human Genome Research Institute at the Na-
tional Institutes of Health. S. Shukla and S.V. Ambudkar were
supported by the Intramural Research Program of the NIH, Na-
tional Cancer Institute, Center for Cancer Research.
Analogue 2c: 1H NMR (400 MHz, DMSO-d6) d 10.45 (s, 1H), 9.52 (s, 1H), 9.28 (s,
1H), 9.16 (s, 1H), 8.71 (m, 1H), 8.55 (d, J = 5.1 Hz, 1H), 8.48 (d, J = 7.9 Hz, 1H),
8.28 (d, J = 1.9 Hz, 1H), 8.12 (m, 1H), 7.94 (m, 1H), 7.74 (m, 1H), 7.65 (s, 1H),
7.55 (m, 1H), 7.49 (d, J = 5.2 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.32 (s, 1H), 2.40 (s,
3H), 2.35 (s, 6H).
15. Davis, M. I.; Hunt, J. P.; Herrgard, S.; Ciceri, P.; Wodicka, L. M.; Pallares, G.;
Hocker, M.; Treiber, D. K.; Zarrinkar, P. P. Nat. Biotechnol. 2011, 1046, 29.
16. Manley, P. W.; Cowan-Jacob, S. W.; Fendrich, G.; Jahnke, W.; Fabbro, D. Blood
2008, 118, 727.
17. Mol, C. D.; Dougan, D. R.; Schneider, T. R.; Skene, R. J.; Kraus, M. L.; Scheibe, D.
N.; Snell, G. P.; Zou, H.; Sang, B.-C.; Wilson, K. P. J. Biol. Chem. 2004, 279,
31655.
18. Mol, C. D.; Lim, K. B.; Sridhar, V.; Zou, H.; Chien, E. Y. T.; Sang, B.-C.;
Nowakowski, J.; Kassel, D. B.; Cronin, C. N.; McRee, D. E. J. Biol. Chem. 2003, 278,
31461.
References and notes
1. Lennartsson, J.; Jelacic, T.; Linnekin, D.; Shivakrupa, R. Stem Cells 2005, 23, 16.