the [3,3]-sigmatropic rearrangement from a chiral cyclo-
pentenol 4. Cyclopentenol 4 was synthesized by an inter-
molecular PausonÀKhand reaction of aryl propyne with
ethylene5 and subsequent 1,2-reduction.
increased gradually. This indicated that the steric hindrance
of the cyclopentenone 7 might have prevented the approach
of chiral reagents. Therefore, we seek other accesses to chiral
cyclopentenol 4. Among which, kinetic resolution is a good
choice. Cyclopentone 7 was first converted into the corre-
sponding racemic cyclopentenol in almost quantitative yield
via a Luche reduction (Scheme 2), and then the gross
product was subjected directly to the Pd-catalyzed oxidative
resolution conditions developed by the Stoltz group.9
Nearly optically pure cyclopentenol 4 (>99% ee) was
obtained in 43% yield, and cyclopentenone 7 could be
recovered in 52% yield by this procedure. This reaction
could be applied well to a 15-g scale, and the recovered
cyclopentenone 7 could be recycled.
Scheme 1. Retrosynthetic Analysis of (À)-Hamigeran B
Scheme 2. Kinetic Resolution of Allylic Alcohol 4
We prepared the aryl propyne 6 via Sonogashira coupling
of the readily available triflate 5 and propyne.6 Alkyne 6was
then subjected to different PausonÀKhand conditions with
ethylene to afford the cyclopentenone 7 (Table 1). Only
moderate yields were achieved when NMO, TMANO, or
nBuSMe was used as a promoter because of the relative
bulky 3-methoxy-5-methylphenyl moiety (entries 1À3).7
However, an excellent result was achieved when excessive
Me2S (30 equiv) was applied with the reaction temperature
raised to 130 °C (entry 5). The reaction was very clean; the
cyclopentenone 7was separated by simple filtration through
a Celite pad, and no further purification was needed.
Next, chiral allylic alcohol 4 was subjected to Claisen
rearrangement conditions. However, neither IrelandÀ
Claisen10 nor JohnsonÀClaisen11 conditions could work.
A reductive Claisen rearrangement, reported also by the Stoltz
group, proved to be effective (Scheme 3).12 Cyclopentenol 4
was converted into the corresponding vinyl ester 8 via a Hg-
catalyzed vinylation,13 and 8 was prone to [3,3]-sigmatropic
rearrangement in the presence of DIBAL-H to yield alcohol 9.
The configuration of the chiral quaternary carbon center
contained in 9 was controlled by the substrate 4.
(5) (a) Donkervoort, J. G.; Gordon, A. R.; Johnstone, C.; Kerr,
W. J.; Lange, U. Tetrahedron 1996, 52, 7391. (b) Gibson, S. E.; Mainolfi,
Table 1. Optimization of the Intermolecular PausonÀKhand
Reaction of 6 with Ethylene
ꢀ
N. Angew. Chem., Int. Ed. 2005, 44, 3022. (c) Vazquez-Romero, A.;
ꢀ
Cardenas, L.; Blasi, E.; Verdaguer, X.; Riera, A. Org. Lett. 2009, 11,
3104.
(6) (a) Bhunia, S.; Wang, K. C.; Liu, R. S. Angew. Chem., Int. Ed.
2008, 47, 5063. (b) Hsu, Y. C.; Ting, C. M.; Liu, R. S. J. Am. Chem. Soc.
2009, 131, 2090.
(7) (a) Krafft, M. E.; Romero, R. H.; Scott, I. L. J. Org. Chem. 1992, 57,
5277. (b) Sugihara, T.; Yamada, M.; Ban, H.; Yamaguchi, M.; Kaneko, C.
Angew. Chem., Int. Ed. 2004,36, 2801. (c) Brown, J. A.; Irvine, S.; Kerr, W. J.;
Pearson, C. M. Org. Biomol. Chem. 2005, 3, 2396. (d) Lagunas, A.; i Payeras,
ꢁ
A. M.; Jimeno, C.; Pericas, M. A. Org. Lett. 2005, 7, 3033.
entry
promotors
conditionsa
yieldb (%)
(8) (a) Robertson, J.; Meo, P.; Dallimore, J. W. P.; Doyle, B. M.;
Hoarau, C. Org. Lett. 2004, 6, 3861. (b) Mulzer, J.; Riether, D. Org. Lett.
2000, 2, 3139. (c) Knapp, S.; Yu, Y. Org. Lett. 2007, 9, 1359. (d) Midland,
M. M.; Greer, S.; Tramontano, A.; Zderic, S. A. J. Am. Chem. Soc. 1979,
101, 2352. (e) Midland, M. M.; McLoughlin, J. I.; Gabriel, J. J. Org.
Chem. 1989, 54, 159.
(9) (a) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725.
(b) Caspi, D. D.; Ebner, D. C.; Bagdanoff, J. T.; Stoltz, B. M. Adv. Synth.
Catal. 2004, 346, 185. (c) Ebner, D. C.; Trend, R. M.; Genet, C.; McGrath,
1
2
3
4
5
TMANO (9 equiv)
NMO (6 equiv)
nBuSMe (3.5 equiv)
Me2S (30 equiv)
Me2S (30 equiv)
PhMe, 40 °C
59
56
44
70
89
˚
DCM, 4 A MS, rt
ClCH2CH2Cl, 83 °C
ClCH2CH2Cl, 83 °C
xylene, 130 °C
a The pressure of ethylene used is ∼30 bar. b Yield of isolated product.
ꢀ
M. J.; OBrien, P.; Stoltz, B. M. Angew. Chem., Int. Ed. 2008, 47, 6367. (d)
Ebner, D. C.; Bagdanoff, J. T.; Ferreira, E. M.; McFadden, R. M.; Caspi,
D. D.; Trend, R. M.; Stoltz, B. M. Chem.;Eur. J. 2009, 15, 12978. For
work by Sigman and co-workers, see: (e) Jensen, D.; Pugsley, J.; Sigman, M.
J. Am. Chem. Soc. 2001, 123, 7475. (f) Jensen, D. R.; Sigman, M. S. Org.
Lett. 2003, 5, 63. (g) Mandal, S. K.; Jensen, D. R.; Pugsley, J. S.; Sigman,
M. S. J. Org. Chem. 2003, 68, 4600. (h) Mueller, J. A.; Sigman, M. S. J. Am.
Chem. Soc. 2003, 125, 7005. (i) Mueller, J. A.; Cowell, A.; Chandler, B. D.;
Sigman, M. S. J. Am. Chem. Soc. 2005, 127, 14817. For a review, see: (j)
Sigman, M. S.; Jensen, D. R. Acc. Chem. Res. 2006, 39, 221.
We anticipated a direct enantioselective carbonyl reduction
of 7 to produce the key chiral intermediate cyclopentenol 4.
Unfortunately, we were able to obtain only low to moderate
ee values under the conditions of CBS or Midland reduction.8
The reactions normally proceeded slowly, and the byproducts
872
Org. Lett., Vol. 15, No. 4, 2013