Page 3 of 4
ChemComm
35 aCrystal data for 3d: C17H19BrO5, M = 383.24, orthorhombic, a = 6.941(3)
Å b = 11.055(4) Å c = 22.261(8) Å α = 90.00°, β = 90.00°, γ = 90.00°, V
= 1708.1(11) Å3, T = 295(2) K, space group P212121, Z = 4, ꢁ(CuKα) =
3.480 mmꢀ1, 15439 reflections measured, 3330 independent reflections
(Rint = 0.0619). The final R1 values were 0.0347 (I > 2σ(I)). The final
40 wR(F2) values were 0.0863 (I > 2σ(I)). The final R1 values were 0.0378
(all data). The final wR(F2) values were 0.0894 (all data). Flack parameter
= ꢀ0.008(19).
inꢀsitu formed monosalt actually acted as a bifunctional catalyst.
One of the primary amine groups activated acetophenone by the
enamine intermediate, and the other primary amine salt of pꢀTSA
formed hydrogen bonds with the 1,3ꢀdiester groups, which could
form both transition states TS1 and TS2 (Figure. 4). It is clearly
that TS2 is sterically unfavorable and TS1 is more feasible
leading to the product with (3S,4R) configuration.
5
1
B. Mao, K. Geurts, M. FañanásꢀMastral, A. W. van Zijl, S. P.
Fletcher, A. J. Minnaard, B. L. Feringa, Org. Lett., 2011, 13, 948
(and references cited therein).
45
50
55
60
65
70
75
80
85
90
2
(a) M. Seitz, O. Reiser, Curr. Opin. Chem. Biol., 2005, 9, 285; (b) S.
Gil, M. Parra, P. Rodriguez, J. Segura, MiniꢀRev. Org. Chem., 2009,
6, 345. For selective examples on the synthesis of optically active γꢀ
butyrolactones, see: (c) D. A. Evans, M. C. Kozlowski, J. A. Murry,
C. S. Burgey, K. R. Campos, B. T. Connell, R. J. Staples, J. Am.
Chem. Soc., 1999, 121, 669; (d) E. L. Carswell, M. L. Snapper, A. H.
Hoveyda, Angew. Chem., Int. Ed., 2006, 45, 7230; (e) H. Ube, N.
Shimada, M. Terada, Angew. Chem., Int. Ed., 2010, 49, 1858.
(a) K. Graikoua, N. Aligiannisa, I. Chinou, A. Skaltsounisa, F.
Tillequinb, M. Litaudonc, Helv. Chim. Acta., 2005, 88, 2654; (b) G. G.
Wu, A. Sudhakar, T. Wang, J. Xie, F. X. Chen, M. Poirier, M.
Huang, V. Sabesan, D. Kwok, J. Cui, X. Yang, T. K. Thiruvengadam,
J. Liao, I. Zavialov, H. N. Nguyen, N. K. Lim, U. S. Pat., 7541471,
2006; (c) X. Luo, Y. Shi, R. Luo, S. Luo, X. Li, R. Wang, S. Li, Y.
Zheng, X. Du, W. Xiao, J. Pu, H. Sun. Org. Lett., 2012, 14, 1286.
(a) J. Bourguignon, A. Schoenfelder, M. C. Schmitt, C. G. Wermuth,
V. Hechler, B. Charlier, M. Maitre, J. Med. Chem., 1988, 31, 893; (b)
Y. Li, X. Wang, R. Fu, W. Yu, X. Wang, Y. Lai, X. Peng, Y. Zhang,
Bioorg. Med. Chem. Lett., 2011, 21, 4210.
(a) V. Hickmann, M. Alcarazo, A. Fürstner, J. Am. Chem. Soc., 2010,
132, 11042; (b) X. Wu, J. Zhou, B. Snider, Angew. Chem. Int. Ed.,
2009, 48, 1283; (c) H. Takayama, R. Fujiwara, Y. Kasai, M. Kitajima,
N. Aimi, Org. Lett., 2003, 5, 2967; (d) J. M. Aurrencoechea, R. Suero,
E. Torres, J. Org. Chem., 2006, 71, 8767; (e) V. V. Shchepin, A. E.
Korzun, N. V. Bronnikova, Russ. J. Org. Chem., 2004, 40, 999; (f) V.
V. Shchepin, A. E. Korzun, M. I. Vakhrin, P. S. Silaichev, M. A.
Ezhikova, M. I. Kodess, Russ. J. Org. Chem., 2006, 42, 1169.
For reviews, see: (a) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List,
Chem. Rev., 2007, 107, 5471; (b) A. Erkkilä, I. Majander, P. M.
Pihko, Chem. Rev., 2007, 107, 5416; (c) P. Melchiorre, M. Marigo, A.
Carlone, G. Bartoli, Angew. Chem. Int. Ed., 2008, 47, 6138; (d) S.
Bertelsen, K. A. Jørgensen, Chem. Soc. Rev., 2009, 38, 2178.
(a) M. Tsakos, C. G. Kokotos, G. Kokotos, Adv. Synth. Catal., 2012,
354, 740; (b) B. Li, Y. Wang, S. Luo, A. Zhong, Z. Li, X. Du, D. Xu,
Eur. J. Org. Chem., 2010, 656; (c) K. Liu, H. Cui, J. Nie, K. Dong, X.
Li, J. Ma, Org. Lett., 2007. 9. 923; (d) M. Tsakos, C. G., Kokotos,
Eur. J. Org. Chem., 2012, 576; (e) H. Ma, K. Liu, F. Zhang, C. Zhu, J.
Nie, J. Ma, J. Org. Chem., 2010, 75, 1402.
3
4
5
Fig. 3 Xꢀray structure of 3d.
10
H
H
H
H
O
O
Ph
NH
Ph
Ph
Ph
O
O
S
S
N
NH3 NH
O
O
H3
O
O
O
O
hindered
O
Re-face
O
O
O
Si-face
6
7
TS1
TS2
Fig.4 Proposed transitional states.
Conclusions
In summary, we have developed the efficient direct asymmetric
15 Michael addition reactions of aryl methyl ketones with 2ꢀ
furanones catalyzed by a simple and commercially available
(1S,2S)ꢀ(ꢀ)ꢀ1,2ꢀdiphenylꢀ1,2ꢀethanediamine and PTSAꢁH2O as
cocatalyst. A broad range of aromatic ketones were transformed
with good yields (up to 95% yield) and excellent
20 enantioselectivities (up to 99% ee). This reaction provides
alternative access to synthetically and biologically interesting
highly substituted chiral γꢀLactones. We fully expect this new
method could be further applied to a broader substrate scope,
leading to a variety of biologically interesting molecules useful in
25 medicinal chemistry. The bioactivity studies of chiral γꢀLactones
are currently underway in our group.
8
9
(a) J. Wang, X. Wang, Z. Ge, T. Cheng, R. Li, Chem. Commun., 2010,
46, 1751; (b) J. Wang, C. Qi, Z. Ge, T. Cheng, R. Li, Chem. Commun.,
2010, 46, 2124; (c) J. Wang, Q. Li, C. Qi, Y. Liu, Z. Ge, R. Li, Org.
Biomol. Chem., 2010, 8, 4240; (d) Y. Liu, J. Wang, Q. Sun, R. Li,
Tetrahedron Lett., 2011, 52, 3584.; (e) Y. Liu, P. Gao, J. Wang, Q.
Sun, Z. Ge, R. Li, Synlett., 2012, 23, 1031.
(a) Y. Shi, Y. Zhou, C. Long, M. Li, Y. Wang, X. Li, R. Guo, H.
Wang, Helv. Chim. Acta., 2009, 92, 1545; (f) S. Kazzouli, V. E.
Marquez, J. Med. Chem., 2008, 51, 5371.
We are grateful for financial support from the National Natural
Science Foundation of China (No. 20972005).
Notes and references
30 a State Key Laboratory of Natural and Biomimetic Drugs, School of
Pharmaceutical Sciences, Peking University, Beijing 100191, China
† Electronic Supplementary Information (ESI) available: [Detailed
experimental procedures and spectral data for compounds 3a to 3v; single
crystal for 3d was recrystallized from EtOH and Water. Crytal data for 3d:
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3