9100
J. Am. Chem. Soc. 1998, 120, 9100-9101
Apparent 1,2-Silyl Migrations in Aromatic Carbenes
Occur by Intermolecular Silyl Exchanges
Ste´phane Sole´, Heinz Gornitzka, Olivier Guerret, and
Guy Bertrand*
Laboratoire de Chimie de Coordination du CNRS
205 route de Narbonne
F-31077 Toulouse Cedex, France
ReceiVed March 10, 1998
ReVised Manuscript ReceiVed July 7, 1998
Figure 1. (a) Correlation diagram of the in-plane 1,2-H-migration for
aromatic carbenes of type 2. (b) Energy diagram of the calculated out of
plane 1,2-H-migration for 2.
In the past few years, carbene chemistry has undergone a
profound revolution with the appearance of stable singlet carbenes
1-61-6 in the literature. However, the true carbenic nature of
these species remains a highly debatable topic.7
Scheme 1
Heinemann et al. demonstrated that even though the reaction
would be exothermic (-26.1 kcal/mol at the RHF/MP2DSQ
level11a and -29 kcal/mol at the DFT/B3LYP level11b), the carbene
2 (R ) H) should be kinetically stable toward 1,2-shifts, since
the activation energy of this rearrangement is high (+46.8 kcal/
mol,11a +39.8 kcal/mol11b). Recently, Ma¨ıer et al. obtained similar
results for the thiazolylidene system 3 (R ) H) (∆H ) - 34.0
kcal/mol, Eq ) + 42.3 kcal/mol).11c
It is now well established that the 1,2-migration is a funda-
mental reaction for singlet carbenes and occurs via a unimolecular
concerted mechanism.8 Alternative intermolecular pathways such
as those involving carbene-olefin π-complexes9 have recently been
ruled out.10 1,2-Hydrogen migrations in aromatic carbenes cannot
proceed through an intramolecular process in the plane of the
ring, since this mechanism would impose the crossing of two
orbitals with the same symmetry as shown in the correlation
diagram (Figure 1a). An alternative possibility, which has been
studied theoretically,11 involves the interaction of the N-H bond
with the out of plane pπ orbital of the carbene. This process
induces a deformation of the ring and thus the loss of the
electronic delocalization of the nitrogen lone pairs (Figure 1b).
Here, we report that 1,2 migrations can occur for aromatic
carbenes of type 1, but via intermolecular processes.
Since the ability of silyl groups to migrate is well established,
we chose to prepare 1H-4-silyl-1,2,4-triazolium salts (7a-d)12
as precursors of the corresponding heterocyclic carbenes 1a-d
(Scheme 1). Deprotonation of salts 7a-d, with various bases,
readily occurred at 0 °C, as shown by the disappearance of the
corresponding 1H NMR signal. Interestingly, no 13C NMR signal
in the range expected for carbene centers (∼200 ppm)13 was
observed; instead, the signals for the quaternary carbon atoms
appeared around 155 ppm. Moreover, the 29Si NMR signals were
shifted to high field (∆δ ≈ 35 ppm) compared to those observed
for the triazolium precursors 7a-d. After workup, the products
8a-d were isolated in 42-81% yields and were fully character-
ized;12 a single-crystal X-ray diffraction study for compound 8a
was performed. 1H-5-Silyl-1,2,4-triazoles 8a-d formally result
from the 1,2-migration of the silyl group from nitrogen to the
carbene center of the transient derivatives 1a-d.
(1) Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.; Melder, J.
P.; Ebel, K.; Brode, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1021.
(2) (a) Arduengo, A. J., III.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.
1991, 113, 361. (b) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am.
Chem. Soc. 1992, 114, 5530. (c) Arduengo, A. J., III; Davidson, F.; Dias, H.
V. R.; Goerlich, J. R.; Khasnis, D.; Marshall, W. J.; Prakasha, T. K. J. Am.
Chem. Soc. 1997, 119, 12742.
(3) Arduengo, A. J., III; Goerlich, J. R.; Marshall, W. J. Liebigs Ann. 1997,
365.
(4) Arduengo, A. J., III; Goerlich, J. R.; Marshall, W. J. J. Am. Chem.
Soc. 1996, 118, 11027.
(5) Alder, R. W.; Allen, P. R.; Murray, M.; Orpen, G. Angew. Chem., Int.
Ed. Engl. 1996, 35, 1121.
(6) (a) Igau, A.; Gru¨tzmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem.
Soc. 1988, 110, 6463. (b) Igau, A.; Baceiredo, A.; Trinquier, G.; Bertrand, G.
Angew. Chem., Int. Ed. Engl. 1989, 28, 621. (c) Gilette, G.; Baceiredo, A.;
Bertrand, G. Angew. Chem., Int. Ed. Engl. 1990, 29, 1429. (d) Soleilhavoup,
M.; Baceiredo, A.; Treutler, O.; Ahlrichs, R.; Nieger, M.; Bertrand, G. J. Am.
Chem. Soc. 1992, 114, 10959. (e) Dyer, P.; Baceiredo, A.; Bertrand, G. Inorg.
Chem. 1996, 35, 46.
(12) Physical and spectroscopic data for selected compounds. For 7a: 1H
3
NMR (CD3CN) δ 1.25 (d, J(H-H) ) 7.2 Hz, 18 H, CH3CH), 1.77 (sept.,
(7) (a) Dagani, R. Chem. Eng. News 1991, 69 (4), 19. (b) Regitz, M. Angew.
Chem., Int. Ed. Engl. 1991, 30, 674. (c) Dagani, R. Chem. Eng. News 1994,
72 (18), 20. (d) Regitz, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 725. (d)
Heinemann, C.; Mu¨ller, T.; Apeloig, Y.; Schwarz, H. J. Am. Chem. Soc. 1996,
118, 2023. (e) Boehme, C.; Frenking, G. J. Am. Chem. Soc. 1996, 118, 2039.
(8) (a) Hoffmann, R.; Zeiss, J. D.; Van Dine, G. W. J. Am. Chem. Soc.
1968, 90, 1485. (b) Nickon, A. Acc. Chem. Res. 1993, 26, 84. (c) Storer, J.
W.; Hook, K. N. J. Am. Chem. Soc. 1993, 115, 10426. (d) Sander, W.; Bucher,
G.; Wierlacher, S. Chem. ReV. 1993, 93, 1583. (e) Jackson, J. E.; Platz, M. S.
AdVances in Carbene Chemistry; Brinker, U.; Ed.; JAI: Greenwich, CT, 1994;
Vol. 1.
(9) (a) Liu, M. T. H. Acc. Chem. Res. 1994, 27, 287. (b) Bonneau, R.; Liu,
M. T. H.; Kim, K. C.; Goodman, J. L. J. Am. Chem. Soc. 1997, 119, 3829.
(10) Keating, A. E.; Garcia-Garibay, M. A.; Houk, K. N. J. Am. Chem.
Soc. 1997, 119, 10805.
(11) (a) Heinemann, C.; Thiel, W. Phys. Chem. Lett. 1994, 217, 11. (b)
McGibbon, G. A.; Heinemann, C.; Lavorato, D. J.; Schwarz, H. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1478. (c) Maier, G.; Endres, J.; Reisenauer, H. P.
Angew. Chem., Int. Ed. Engl. 1997, 36, 1709.
3J(H-H) ) 7.2 Hz, 3 H, CHSi), 4.23 (s, 3 H, CH3N), 8.72 (s, 1 H, CH), 9.49
(s, 1 H, CH); 13C NMR (CD3CN) δ 10.8 (s, CHSi), 16.9 (s, CH3CH), 38.9 (s,
1
CH3N), 120.4 (q, J(C-F) ) 320.1 Hz, CF3), 144.7 (s, CH), 146.5 (s, CH);
29Si NMR (CD3CN) δ +41.4; mp 77 °C. For 8a: 1H NMR (C6D6) δ 1.04 (d,
3J(H-H) ) 7.1 Hz, 18 H, CH3CH), 1.29 (sept., 3J(H-H) ) 7.1 Hz, 3 H,
CHSi), 3.45 (s, 3 H, CH3N), 8.13 (s, 1 H, CH); 13C NMR (C6D6) δ 12.4 (s,
CHSi), 18.6 (s, CH3CH), 37.4 (s, CH3N), 152.0 (s, CH), 155.3 (s, CSi); 29Si
NMR (C6D6) δ +1.2; MS (DCI, NH3) m/z ) 240 (M + 1); mp 40-42 °C.
For 9a: 1H NMR (CDCl3) δ 0.99 (d, 3J(H-H) ) 3.9 Hz, 18 H, CH3CH),
3
1.17 (sept., J(H-H) ) 3.9 Hz, 3 H, CHSi), 3.69 (s, 3 H, CH3N), 6.30 (s, 1
H, CHOSi) 7.21-7.42 (m., 5 H, C6H5), 7.73 (s, 1 H, CH); 13C NMR (CDCl3)
δ 12.0 (s, CHSi), 17.9 (s, CH3CH), 36.1 (s, CH3N), 69.9 (s, CHOSi), 125.1,
126.8, 127.7, 128.4 (C6H5), 149.7 (s, CH), 155.9 (s, C-CHOSi); 29Si NMR
(C6D6) δ +19.0; MS (DCI, NH3) m/z ) 346 (M + 1). For 12′: 1H NMR
(CD3CN) δ 0.05 (s, 6 H, CH3Si), 1.12 (s, 9 H, CH3C), 7.60-8.02 (m, 15 H,
C6H5); 13C NMR (CD3CN) δ -4.6 (s, CH3Si), 18.4 (s, CH3C), 26.7 (s, CH3C),
1
120.2 (q, J(C-F) ) 320.3 Hz, CF3), 123-141 (m, C6H5), 154.3 (s, CSi).
(13) Herrmann, W. A.; Ko¨cher, C. Angew. Chem., Int. Ed. Engl. 1997, 36,
2162.
S0002-7863(98)00797-5 CCC: $15.00 © 1998 American Chemical Society
Published on Web 08/22/1998