254
S. Chandrasekhar et al. / Tetrahedron Letters 54 (2013) 252–255
O
b
n-butylammonium fluoride in THF at 0 °C to provide the title com-
pound 2 in 86% yield as depicted in Scheme 5.
a
HO
OTBDPS
OTBDPS
HO
OTBDPS
OTBDPS
15
16
O
Conclusion
OH
d
g
c
HO
EtO
In conclusion, we have demonstrated a highly stereoselective
synthesis of C5–C23 segment of biselyngbyaside using Barbier ally-
lation, E-selective methylation, and Julia–Kocienski olefination as
key transformations.25 The desired chiral centers were successfully
installed through Crimmin’s acetate aldol reaction and Sharpless
asymmetric epoxidation. We believe that the approach described
herein is potentially useful in the total synthesis of biselyngbya-
side. Studies in this direction are underway.
18
17
TBDPSO
TBDPSO
TBDPSO
f
OH
6
OH
6a
OMe
19
Acknowledgments
e
Ph
G.R. thanks UGC, New Delhi and T.N. thanks CSIR, New Delhi for
research fellowships. The author acknowledges partial support by
the King Saud University, Global Research Network for Organic
Synthesis (GRNOS).
O
S
NO2
N
HO
N
h
N
N
O
PNBA =
COOH
OMe
20
OMe
Supplementary data
4
Supplementary data associated with this article can be found, in
Scheme 4. Reagents and conditions: (a) (ꢀ)-DET, Ti(OiPr)4, TBHP, CH2Cl2, ꢀ30 °C,
8 h, 80%; (b) Me3Al, CH2Cl2, 0 °C, 2 h, 75%; (c) (i) NaIO4, THF:H2O (1:1), (ii)
Ph3P@C(Me)COOEt, C6H6, rt, 3 h, 82% for two steps; (d) (i) DIBAL-H, CH2Cl2, ꢀ78 °C,
2 h, (ii) allyl bromide, Zn, THF, rt, 2 h, 80% for two steps; (e) (i) TPP, DIAD, PNBA, dry
THF, 10 °C to rt, 16 h; (ii) K2CO3, MeOH, 30 min, 90% for two steps; (f) NaH, MeI, dry
THF, 0 °C to rt, 1 h, 90%; (g) NH4F, MeOH, rt, 12 h, 85%; (h) (i) TPP, DIAD, PTSH, dry
THF, 0 °C to rt, 3 h, (ii) Mo7O24(NH4)6ꢂ4H2O, H2O2, ethanol, rt, 24 h, 87% for two steps.
References and notes
1. (a) Jiang, T. L.; Liu, R. H.; Salmon, S. E. Cancer Chemother. Pharmacol. 1983, 11, 1–
4; (b) Moore, B. S.; Chen, J. L.; Patterson, G. M. L.; Moore, R. E.; Brinen, L. S.; Kato,
Y.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 4061–4063.
2. Dey, B.; Lerner, D. L.; Lusso, P.; Boyd, M. R.; Elder, J. H.; Berger, E. H. J. Virol.
1999, 73, 4360–4371.
3. (a) Gustafson, K. R.; Cardellina, J. H., II; Fuller, R. W.; Weislow, O. S.; Kiser, R. F.;
Snader, K. M.; Patterson, G. M.; Boyd, M. R. J. Natl. Cancer Inst. 1989, 81, 1254–
1258; (b) Hayashi, K.; Hayashi, T.; Kojima, I. AIDS Res. Hum. Retroviruses 1996,
12, 1463–1471.
4. (a) Wu, X.; Stockdill, J. L.; Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc. 2010,
132, 4098–4100; (b) Andrus, M. B.; Li, W.; Keyes, R. F. J. Org. Chem. 1997, 62,
5542–5549.
a
b
3
4
OTBS
OH
5. (a) Wipf, P.; Venkatraman, S. J. Org. Chem. 1996, 61, 6517–6522; (b) Hirata, K.;
Yoshitomi, S.; Dwi, S.; Iwabe, O.; Mahakhant, A.; Polchai, J.; Miyamoto, K. J.
Biosci. Bioeng. 2003, 95, 512–517.
6. Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Nat. Rev. Drug Disc.
2009, 8, 69–85.
OMe
OMe
21
2
Scheme 5. Reagents and conditions: (a) KHMDS, dry THF, ꢀ78 °C, 1 h, 88%, 95:5
(E:Z) mixture; (b) TBAF, dry THF, 0 °C to rt, 3 h, 86%.
7. Teruya, T.; Sasaki, H.; Kitamura, K.; Nakayama, T.; Suenaga, K. Org. Lett. 2009,
11, 2421–2424.
8. (a) Corley, D. G.; Herb, R.; Moore, R. E.; Scheuer, P. J. J. Org. Chem. 1988, 53,
3644–3646; (b) Jefford, C. W.; Bernadinelli, G.; Tanaka, J.; Higa, T. Tetrahedron
Lett. 1996, 37, 159–162; (c) Mooberry, S. L.; Tien, G.; Hernandez, H. A.;
Plubrukarn, A.; Davidson, B. S. Cancer Res. 1999, 59, 653–660.
9. (a) Chandrasekhar, S.; Yaragorla, S. R.; Sreelakshmi, L.; Reddy, C. R. Tetrahedron
2008, 64, 5174–5183; (b) Chandrasekhar, S.; Vijeender, K.; Chandrashekar, G.;
Reddy, C. R. Tetrahedron: Asymmetry 2007, 18, 2473–2478; (c) Chandrasekhar,
S.; Sultana, S. S.; Kiranmai, N.; Narsihmulu, Ch. Tetrahedron Lett. 2007, 48,
2373–2375; (d) Chandrasekhar, S.; Reddy, N. R.; Rao, Y. S. Tetrahedron 2006, 62,
12098–12107; (e) Chandrasekhar, S.; Narsihmulu, Ch.; Jagadeeshwar, V.;
Sultana, S. S. ARKIVOC 2005, 92–98.
The alcohol 6a was converted into desired allyl alcohol 6 under
Mitsunobu conditions and secondary hydroxyl group in 6 was pro-
tected as its methyl ether 19 using NaH and MeI in 90% yield.
TBDPS group in 19 was desilylated with NH4F in MeOH to afford
primary alcohol 20 (85%) which was converted into sulfone 4 by
a two-step process initially; to thioether by employing Mitsunobu
protocol22 using commercially available 1-phenyl-1H-tetrazole-5-
thiol (PTSH) in THF, followed by over oxidation into sulfone 4 using
hexaammonium heptamolybdate tetrahydrate23 and H2O2 in etha-
nol with 87% yield for two steps (Scheme 4). Fragment 4 was thus
obtained in nine steps and in 26% overall yield from alcohol 15.
With successful completion of the desired fragments 3 and 4,
we next turned our attention to construct C5–C23 segment by cou-
pling of the two partners under Julia–Kocienski olefination condi-
tions,24 which gave highly E-selective conjugate diene system
(C12–C15) in biselyngbyaside 1 (Scheme 5). The sulfone 4 was
deprotonated using potassium hexamethyldisilazane (KHMDS) un-
der anhydrous conditions in THF, followed by trapping of anion
10. For synthesis of the C1–C13 fragment of biselyngbyaside, see: Sawant, P.;
Martin, M. E. Synlett 2011, 3002–3004.
11. (a) Bieber, L. W.; Da Silva, M. F. Tetrahedron Lett. 2007, 48, 7088–7090; (b)
Boland, W.; Mertes, K. Synthesis 1985, 705–708.
12. HPLC column dC18, 150 ꢁ 4.6 mm, 5
l, Mobilephase: 70% ACN + 30% water
(1 mL/min), rt: 5.23 (93%) and 5.90 (7%).
13. Corey, E. J.; Katzenellenbogen, J. J. Am. Chem. Soc. 1969, 91, 1851–1852.
14. At this stage, we could able to isolate compound 8 (obtained from 7) in pure
form along with the inseparable mixture of unidentified compounds.
15. Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66,
894–902; (b) Hodge, M. B.; Olivo, H. F. Tetrahedron 2004, 60, 9397–9403.
16. (a) Yadav, J. S.; Kumar, V. N.; Rao, R. S.; Srihari, P. Synthesis 2008, 1938–1942;
(b) Crimmins, M. T.; Chaudhary, K. Org. Lett. 2000, 2, 775–777.
17. Yadav, J. S.; Rajendar, J. Eur. J. Org. Chem. 2011, 2011, 6781–6788.
18. Famer, J. L.; Marron, K. S.; Koch, S. S. C.; Hwang, C. K.; Kallel, E. A.; Zhi, L.;
Nadzan, A. M.; Robertson, D. W.; Bennani, Y. L. Bioorg. Med. Chem. Lett. 2006, 16,
2352.
with
a
,b-unsaturated aldehyde 3 at ꢀ78 °C for 1 h provided the
separable mixture of E-isomer as major along with Z-isomer
(95:5) in 88% yield. The TBS group in 21 was cleaved using tetra-