Fig. 2 Molecular docking studies of compounds 13, 14 and DMU-212 at the colchicine binding site on tubulin
6. Pace-Asciak, C. R.; Hahn, S.; Diamandis, E. P.; Soleas, G.; Goldberg, D.
M. Clin. Chim. Acta, 1995, 235, 207-219.
Conclusion
Novel heteroaromatic DMU-212 analogs (8-15) have been
synthesized and evaluated for their anti-cancer activity against a
panel of 60 human cancer cell lines. Compounds containing a
trans-3,4,5-trimethoxystyryl moiety (8, 11, 13, and 14) showed
potent growth inhibition with GI50 values generally <1 µM
against most of the cancer cell lines in the panel. The removal of
just one aromatic methoxy group from these compounds to afford
either trans-3,4-dimethoxystyryl (9) or trans-3,5-dimethoxy
styryl (10, 12, 15) analogs results in a decrease in anti-cancer
activity, which indicates that the 3,4,5-trimethoxystyryl moiety is
an essential structural element for the observed potent anti-cancer
activity of these DMU-212 analogs. Compounds 8, 11, 13 and 14
all exhibited significant growth inhibition against most of the
human cancer cells in the 60-cell panel, and the results from the
molecular modeling studies are consistent with the in vitro anti-
cancer activities of these molecules being mediated via their
binding to the colchicine binding site on tubulin. The above four
molecules were considered as important lead compounds for
further development as anti-cancer drugs.
7. Bertelli, A. A.; Giovannini, L.; Giannessi, D.; Migliori, M.; Bernini, W.;
Fregoni, M.; Bertelli, A. Int. J. Tissue React., 1995, 17, 1-3.
8. Athar, M.; Back, J. H.; Tang, X.; Kim, K. H.; Kopelovich, L.; Bickers,
D. R.; Kim, A. L. Toxicol. Appl. Pharmacol., 2007, 224, 274-283.
9. Perez-Melero, C.; Maya, A. B.; del Rey, B.; Pelaez, R.; Caballero, E.;
Medarde, M. Bioorg. Med. Chem. Lett., 2004, 14, 3771-3774.
10. Heynekamp, J. J.; Weber, W. M.; Hunsaker, L. A.; Gonzales, A. M.;
Orlando, R. A.; Deck, L. M.; Jagt, D. L. J. Med. Chem., 2006, 49, 7182-
7189.
11. Dumontet, C.; Jordan, M. A. Nat. Rev. Drug. Disc., 2010, 9, 790-803.
12. Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. Biochem., 1989, 28,
6984-6991.
13. Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.;
Garcia-Kendall, D. Experientia, 1989, 45, 209-211.
14. McGown, A. T.; Fox, B. W. Canc. Chemo. Pharmacol., 1990, 26, 79-81.
15. Madadi, N. R.; Crooks, P. A. Lett. Drug. Des. & Disc., 2015, 12,
DOI:10.2174/1570180812999150324163710.
16. Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C.
M.; Hamel, E. J. Med. Chem., 1991, 34 2579-2588.
17. Madadi, N. R.; Zong, H.; Ketkar, A.; Zheng, C.; Penthala, N. R.;
Janganati, V.; Bommagani, S.; Eoff, R. L.; Guzman, M. L.; Crooks, P. A.
Med. Chem. Commun., 2015, 6, DOI: 10.1039/C4MD00478G.
18. Jalily, P. H.; Hadfield, J. A.; Hirst, N.; Rossington, S. B. Bioorg. Med.
Chem. Lett., 2012, 22, 6731-6734.
Acknowledgements
19. Penthala, N. R.; Sonar, V. N.; Horn, J.; Leggas, M.; Yadlapalli, J. S.;
Crooks, P. A. Med. Chem. Commun., 2013, 4 1073-1078.
20. Penthala, N. R.; Janganati, V.; Bommagani, S.; Crooks, P. A. Med.
Chem. Commun., 2014, 5 886-890.
We are grateful to NCI/NIH (Grant Number CA 140409), to
the Arkansas Research Alliance (ARA) for financial support, and
to the NCI Developmental Therapeutic Program (DTP) for
screening data.
21. Alonso, F.; Riente, P.; Yus, M. European J. Org. Chem., 2009, 6034-
6042.
22. Rubinstein, L. V.; Shoemaker, R. H.; Paull, K. D.; Simon, R. M.;
Tosini, S.; Skehan, P.; Scudiero, D. A.; Monks, A.; Boyd, M. R. J. Natl.
Cancer Inst., 1990, 82 1113-1118.
References and notes
23. Madadi, N. R.; Penthala, N. R.; Janganati, V.; Crooks, P. A. Bioorg.
Med. Chem. Lett., 2014, 24 601-603.
24. General procedure for the synthesis of heteroaromatic analogs of DMU-
1. Belleri, M.; Ribatti, D.; Nicoli, S.; Cotelli, F.; Forti, L.; Vannini, V.;
Stivala, L. A.; Presta, M. Mol. Pharmacol., 2005, 67, 1451-1459.
2. Schneider, Y.; Chabert, P.; Stutzmann, J.; Coelho, D.; Fougerousse, A.;
Gosse, F.; Launay, J. F.; Brouillard, R.; Raul, F. Int. J. Cancer, 2003, 107,
189-196.
212 (8-15):
A mixture of carbaldehyde (0.001 mol), alkoxy triphenyl
phosphonium bromide (0.001 mol), and sodium methoxide (2.5 gm) in
methanol (50 ml) was stirred at room temperature for 3-4 h. Crushed ice was
then added to afford a solid product. The crude solid was isolated by filtration
and washed several times with cold methanol (3 x 5 ml). The resulting pale
yellow solid was then recrystallized from methanol to afford the desired (E)-
2-(3,4,5-trimethoxystyryl)heteroaromatic product. (E)-2-(3,4,5-trimethoxy
styryl)-1H-indole (8): mp: 228-2300C, 1H NMR (CDCl3); δ 3.87 (s, 3H), 3.92
(s, 6H), 6.61 (s, 1H), 6.72 (s, 2H), 6.82-6.86 (d, J=16.4 Hz, 1H), 7.01-7.05 (d,
J=16 HZ, 1H), 7.079-7.11 (t, J=7.2 Hz, 14.8Hz, 1H), 7.17-7.21 (t, J=7.2 Hz,
3. Soleas, G. J.; Diamandis, E. P.; Goldberg, D. M. Clin. Biochem., 1997,
30, 91-113.
4. Fauconneau, B.; Waffo-Teguo, P.; Huguet, F.; Barrier, L.; Decendit, A.;
Merillon, J. M. Life Sci., 1997, 61, 2103-2110.
5. Chanvitayapongs, S.; Draczynska-Lusiak, B.; Sun, A. Y. Neuroreport,
1997, 8, 1499-1502.