ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Influence of Base and Structure in the
Reversible Covalent Conjugate Addition
of Thiol to Polycyclic Enone Scaffolds
Christopher J. Rosenker,‡ Elizabeth H. Krenske,*,† K. N. Houk,*,§ and Peter Wipf*,‡
School of Chemistry, University of Melbourne, VIC 3010, Australia, and Australian
Research Council Centre of Excellence for Free Radical Chemistry and Biotechnology,
Department of Chemistry and Biochemistry, University of California, Los Angeles,
California 90095, United States, and Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
e.krenske@uq.edu.au; houk@chem.ucla.edu; pwipf@pitt.edu
Received January 11, 2013
ABSTRACT
The energetics of thiol addition and elimination reactions to bicyclic enones derived from an indole core structure were explored using 1H NMR
and density functional theory (DFT) calculations. The agreement between experiment and theory is excellent, and the combined results reveal that
even minor changes in the conformation of the enone, substituents on the scaffold, and the use of different bases have a signficant influence on
product distribution. A potential application of these principles is in the rational design of new reversible covalent enzyme inhibitors.
Interest in irreversible inhibitors of enzymatic transfor-
mations or receptor mediated events has surged in recent
years, in part due to a better understanding of the mecha-
nism of action of biologically active natural products,
which often act as covalent modifiers.1 In addition to
R-halo carbonyl groups, oxiranes, acylamides, and vinyl
sulfones, enones are increasingly valuable as tunable cova-
lent inhibitors,2 and the potential use of enones as selective
thiol capture agents in enzyme active sites and allosteric
hot spots has encouraged mechanistic studies.3 Spectro-
scopic and computational methods have been developed
to rapidly classify thiol acceptors,4 and many synthetic
protocols are available to effect Michael reactions of sulfur
donors.5
In previous studies, we have identified thiol capture
pathways in epoxyketones and used reversible thiol addi-
tions to enones in natural products total synthesis.6,7 For
example, the synthesis of (ꢀ)-tuberostemonine 1 required
† University of Melbourne and Australian Research Council Centre of
Excellence for Free Radical Chemistry and Biotechnology. Current address:
School of Chemistry and Molecular Biosciences, University of Queensland,
Brisbane, QLD 4072, Australia.
(3) (a) van Axel Castelli, V.; Bernardi, F.; Dalla Cort, A.; Mandolini,
L.; Rossi, I.; Schiaffino, L. J. Org. Chem. 1999, 64, 8122. (b) Castelli, V.;
Dalla Cort, A.; Mandolini, L.; Reinhoudt, D.; Schiaffino, L. Eur. J. Org.
Chem. 2003, 627. (c) Krenske, E. H.; Petter, R. C.; Zhu, Z.; Houk, K. N.
J. Org. Chem. 2011, 76, 5074.
(4) (a) Suzuki, M.; Mori, M.; Niwa, T.; Hirata, R.; Furuta, K.;
Ishikawa, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 2376. (b) Cusack,
K. P.; Arnold, L. D.; Barberis, C. E.; Chen, H.; Ericsson, A. M.; Gaza-
Bulseco, G. S.; Gordon, T. D.; Grinnell, C. M.; Harsch, A.; Pellegrini,
M.; Tarcsa, E. Bioorg. Med. Chem. Lett. 2004, 14, 5503. (c) Gacche, R.;
Khsirsagar, M.; Kamble, S.; Bandgar, B.; Dhole, N.; Shisode, K.;
Chaudhari, A. Chem. Pharm. Bull. 2008, 56, 897. (d) Avonto, C.;
Taglialatela-Scafati, O.; Pollastro, F.; Minassi, A.; Di Marzo, V.; De
Petrocellis, L.; Appendino, G. Angew. Chem., Int. Ed. 2010, 50, 467.
(5) (a) Enders, D.; Luettgen, K.; Narine, A. A. Synthesis 2007, 959.
(b) Breman, A. C.; Smits, J. M. M.; De Gelder, R.; Van Maarseveen,
J. H.; Ingemann, S.; Hiemstra, H. Synlett 2012, 23, 2195.
‡ University of Pittsburgh.
§ University of California.
(1) (a) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311. (b)
Wipf, P.; Halter, R. J. Org. Biomol. Chem. 2005, 3, 2053. (c) Drahl, C.;
Cravatt, B. F.; Sorensen, E. J. Angew. Chem., Int. Ed. 2005, 44, 5788.
(2) For reviews and recent examples: (a) Amslinger, S. ChemMed-
Chem 2010, 5, 351. (b) Singh, J.; Petter, R. C.; Baillie, T. A.; Whitty, A.
Nat. Rev. Drug Discovery 2011, 10, 307. (c) Zheng, S.; Santosh Laxmi,
Y. R.; David, E.; Dinkova-Kostova, A. T.; Shiavoni, K. H.; Ren, Y.;
Zheng, Y.; Trevino, I.; Bumeister, R.; Ojima, I.; Wigley, W. C.; Bliska,
J. B.; Mierke, D. F.; Honda, T. J. Med. Chem. 2012, 55, 4837. (d)
Serafimova, I. M.; Pufall, M. A.; Krishnan, S.; Duda, K.; Cohen, M. S.;
€
Maglathlin, R. L.; McFarland, J. M.; Miller, R. M.; Frodin, M.;
Taunton, J. Nat. Chem. Biol. 2012, 8, 471.
(6) Wipf, P.; Jeger, P.; Kim, Y. Bioorg. Med. Chem. Lett. 1998, 8, 351.
r
10.1021/ol400094k
XXXX American Chemical Society