Inorganic Chemistry
Communication
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the French Research Agency
(Agence Nationale de la Recherche; Grant ANR-09-BLAN-
0054-01).
REFERENCES
(1) Waldmann, O. Inorg. Chem. 2007, 46, 10035−10037.
(2) Venkatakrishnan, T. S.; Sahoo, S.; Bref
■
́
uel, N.; Duhayon, C.;
Paulsen, C.; Barra, A.-L.; Ramasesha, S.; Sutter, J.-P. J. Am. Chem. Soc.
2010, 132, 6047−6056.
Figure 5. (left) Temperature dependence of χM′ and χM″ as a function of
the frequency for 3. (right) Plot of ln τ versus 1/TB. The straight line is a
fit to the data points (see the text).
́
(3) Batchelor, L. J.; Sangalli, M.; Guillot, R. g.; Guihery, N.; Maurice,
R.; Tuna, F.; Mallah, T. Inorg. Chem. 2011, 50, 12045.
(4) Freedman, D. E.; Harman, W. H.; Harris, T. D.; Long, G. J.; Chang,
C. J.; Long, J. R. J. Am. Chem. Soc. 2010, 132, 1224−1225.
(5) Harman, W. H.; Harris, T. D.; Freedman, D. E.; Fong, H.; Chang,
A.; Rinehart, J. D.; Ozarowski, A.; Sougrati, M. T.; Grandjean, F.; Long,
G. J.; Long, J. R.; Chang, C. J. J. Am. Chem. Soc. 2010, 132, 18115.
(6) Jurca, T.; Farghal, A.; Lin, P.-H.; Korobkov, I.; Murugesu, M.;
Richeson, D. S. J. Am. Chem. Soc. 2011, 133, 15814.
the frequency dependence of in-phase (χM′) and out-of-phase
(χM″) ac signals. It can be noticed that the χM″ signals are found
below TN. Such behavior was not found for 4 even when a static
field was applied. In Figure 5, we plot the blocking temperatures
(defined as the peak of χM″ for a given frequency) as ln τ versus
1/TB, where τ = 1/2πν is the corresponding relaxation time for a
given frequency ν. The values obtained from the least-squares
fitting of the Arrhenius law (τ = τ0 expΔ/kBT) are Δ/kB = 30 K
and τ0 = 1.6 × 10−9 s, confirming a SMM-type behavior for 3.
The results reported here substantiate the possibility of
designing large single-ion anisotropy of a metal center by
controlling the coordination geometry. NiII is known to usually
exhibit positive D values in penta- or hexacoordinated geo-
metries. In a pentagonal-bipyramidal environment imposed by
the preorganized pentadentate ligand, NiII exhibits substantially
negative D values. While related values are known for strongly
distorted octahedral surroundings, such geometries are often
difficult to design on purpose.19,20 A further prominent
characteristic of the reported complexes is the opportunity to
involve them as Ising-type building units for the design of
molecular magnets. This is illustrated by 3, for which slow
relaxation of magnetization is observed concomitantly with
antiferromagnetic ordering. While for 4 the intermolecular
interactions have been avoided, no SMM behavior is observed.
We believe that the different arrangement for this pentanuclear
system is the cause. Work is in progress to expand the family of
heteronuclear compounds involving heptacoordinated nickel
units.
(7) Zhang, Y.-Z.; Wang, B.-W.; Sato, O.; Gao, S. Chem. Commun. 2010,
46, 6959−6961.
(8) Pradhan, R.; Desplanches, C.; Guionneau, P.; Sutter, J.-P. Inorg.
Chem. 2003, 42, 6607−6609.
(9) Giordano, T. J.; Palenik, G. J.; Palenik, R. C.; Sullivan, D. A. Inorg.
Chem. 1979, 18, 2445−2450.
(10) Crystallographic data for 2: C36.50H35N7NiO9.50, monoclinic, P21/
c, a = 8.3993(2) Å, b = 18.0571(3) Å, c = 23.6812(3) Å, α = 90°, β =
97.872(2)°, γ = 90°, V = 3557.8(1) Å3, R1 = 0.0717 [I > 3σ(I)].
Crystallographic data for 3: C86.33H93N31.67Ni3O20W2, monoclinic, C2/c,
a = 29.1095(2) Å, b = 16.8728(1) Å, c = 21.4170(1) Å, α = 90°, β =
90.182(1)°, γ = 90°, V = 10519.1(1) Å3, R1 = 0.0319 [I > 3σ(I)].
Crystallographic data for 4: C121H91N31Ni3O8W2, monoclinic, P21, a =
11.0517(4) Å, b = 30.978(1) Å, c = 21.1989(7) Å, α = 90°, β =
98.685(2)°, γ = 90°, V = 7174.4(4) Å3, R1 = 0.0532 [I > 3σ(I)].
(11) Casanova, D.; Alemany, P.; Bofill, J. M.; Alvarez, S. Chem.Eur. J.
2003, 9, 1281−1295.
(12) Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J. M.; Alemany, P.;
Alvarez, S.; Pinsky, M.; Avnir, D. SHAPE: Continuous shape measures of
polygonal and polyhedral molecular fragments; University of Barcelona:
Barcelona, 2005.
(13) Visinescu, D.; Desplanches, C.; Imaz, I.; Bahers, V.; Pradhan, R.;
Villamena, F.; Guionneau, P.; Sutter, J.-P. J. Am. Chem. Soc. 2006, 128,
10202−10212.
(14) Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. Chem.Eur. J.
2005, 11, 1479−1494.
́
(15) Ruamps, R.; Batchelor, L. J.; Maurice, R.; Gogoi, N.; Jimenez-
ASSOCIATED CONTENT
* Supporting Information
■
́
Lozano, P.; Guihery, N.; de Graaf, C.; Barra, A.-L.; Sutter, J.-P.; Mallah,
S
T. Chem.Eur. J. 2013, 19, 950−956.
X-ray crystallographic data in CIF format, syntheses, crystal,
ORTEP, and geometrical data for 2−4, magnetic data for 4. This
material is available free of charge via the Internet at http://pubs.
acs.org. The atomic coordinates for 2−4 have also been
deposited with the Cambridge Crystallographic Data Centre.
The coordinates can be obtained, upon request, from the
Director, Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB2 1EZ, U.K., by references CCDC 892918,
892919, and 892920.
(16) Sutter, J.-P.; Dhers, S.; Costes, J. P.; Duhayon, C. C. R. Chim.
2008, 11, 1200−1206.
(17) Boudalis, A. K.; Clemente-Juan, J. M.; Dahan, F.; Tuchagues, J. P.
Inorg. Chem. 2004, 43, 1574−1586.
(18) Dhers, S.; Sahoo, S.; Costes, J.-P.; Duhayon, C.; Ramasesha, S.;
Sutter, J.-P. CrystEngComm 2009, 11, 2078−2083.
(19) Rogez, G.; Rebilly, J.-N.; Barra, A.-L.; Sorace, L.; Blondin, G.;
Kirchner, N.; Duran, M.; van Slageren, J.; Parsons, S.; Ricard, L.;
Marvilliers, A.; Mallah, T. Angew. Chem., Int. Ed. 2005, 44, 1876−1879.
(20) Boca, R. Coord. Chem. Rev. 2004, 248, 757−815.
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Department of Chemical Sciences, Tezpur University, Napaam,
Sonitpur, Assam 784 028, India.
C
dx.doi.org/10.1021/ic3027368 | Inorg. Chem. XXXX, XXX, XXX−XXX