processes to form furan derivatives, the synthesis of
R-carbonyl furans via (2-furyl)carbene complexes is still highly
favorable. Fisher carbene complexes are one of the most
versatile organometallic reagents9 and play a critical role in
generating novel molecules in organic transformations.10
Transformation of the carbene complex attracts much atten-
tion, and a number of novel reactions involving this complex
have been reported in modern organic synthesis. Therefore,
in this context, we hope to describe a convenient method
to synthesize R-carbonyl furans via direct oxidation of a
(2-furyl)carbene intermediate by using air as the oxidant.
Recently, we have reported a novel Cu(I)-catalyzed11
domino reaction for the synthesis of R-carbonyl furans via
a rearrangement/dehydrogenation oxidation/carbene oxi-
dation sequence of 1,5-enynes (Scheme 1a). Consequently,
an insightful investigation has been employed to synthesize
R-carbonyl furan derivatives through 5-exodig cyclization
of an ene-yne-ketone,12 which has been demonstrated in
Scheme 1b.
Table 1. Optimization of Reaction Conditionsa
entry catalyst temp (°C) t (h)
solvent
CH2Cl2
yields (%)b
1
CuI
50
50
50
50
50
rt
rt
rt
rt
rt
rt
rt
rt
rt
rt
rt
rt
rt
rt
rt
12
12
12
12
12
12
12
12
12
12
10
8
NPc
NP
NP
NP
NP
10
2
CuBr
CuCl
CuCN
Cu2O
CuI
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH3OH
CH3CN
DMF
3
4
5
6
7
CuBr
CuCl
CuCN
Cu2O
CuBr
CuBr
CuBr
CuBr
CuBr
CuBr
CuBr
CuBr
CuBr
À
75
8
18
9
trace
73
10
11
12
13
14
15
16
17
18
19
20
78
78
4
61
Scheme 1. Synthesis of Furans via (2-Furyl)carbene Complexes
20
8
78
83
8
75
8
77
8
toluene
1,4-dioxane
CH3OH
39
8
73
NPc
8
a Reaction conditions: 3-Phenylpropiolaldehyde (1a 0.5 mmol), pentane-
2,4-dione (2a 0.6 mmol), AcOH (5 mmol %), copper(I) catalyst (3%),
solvent (3 mL), rtÀ50 °C. b GC yields. c No product.
In our initial study, we examined the Cu(I)-catalyzed
one-pot process with various oxidants and solvents to opti-
mize the reaction conditions. 3-Phenylpropiolaldehyde (1a)
and pentane-2,4-dione (2a) were chosen as model substrates,
and the results are described in Table 1. The intermediate
product 3a was easy to prepare. In a typical procedure, 1a
(0.5 mmol), 2a (0.6 mmol), and AcOH (5 mmol %) were
stirred for 30 min in CH2Cl2 (3 mL) at room temperature.
Subsequently, various copper(I) catalysts, such as CuI, CuBr,
CuCl, CuCN, and Cu2O, were tested at 50 °C for 12 h
(Table 1, entries 1À5). However, no product was observed
and the entire intermediate product 3a disappeared by
GCMS, because the reaction may be too severe at 50 °C.
In the next step, the effects of temperature were tested next.
Interestingly, the desired product 4a was obtained in 75%
GC yields, as the reaction was carried out at rt in the presence
of CuBr (Table 1, entry 7). The results showed that this
reaction was highly sensitive to temperature variations. Other
Cu(I)-catalysts, such as CuI, CuCl, CuCN, and Cu2O, were
also effected to generate the corresponding product in mod-
erate to good yields (Table 1, entries 6, 8À10). The reaction
time was also examined, and the results showed that 8 h was
the best choice. Subsequently, we tried to improve the yields
(4) (a) Ma, S.; Gu, Z. J. Am. Chem. Soc. 2005, 127, 6182–6183. (b)
Gu, Z.; Wang, X.; Shu, W.; Ma, S. J. Am. Chem. Soc. 2007, 129, 10948–
10956.
(5) (a) Sromek, A.; Kel’in, A.; Gevorgyan, V. Angew. Chem., Int. Ed.
2004, 43, 2280–2282. (b) Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. Angew.
Chem., Int. Ed. 2003, 42, 98–101. (c) Kel’in, A. V.; Gevorgyan, V. J. Org.
Chem. 2002, 67, 95–98.
(6) (a) Dudnik, A.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc.
2010, 132, 7645–7655. (b) Sromek, A. W.; Rubina, M.; Gevorgyan, V.
J. Am. Chem. Soc. 2005, 127, 10500–10501. (c) Xia, Y.; Dudnik, A. S.;
Gevorgyan, V.; Li, Y. J. Am. Chem. Soc. 2008, 130, 6940–6941. (d)
Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7, 3925–3927.
(7) Cao, H.; Jiang, H. F.; Mai, R. H.; Zhu, S. F.; Qi, C. R. Adv. Synth.
Catal. 2010, 352, 143–152.
(8) Zhang, M.; Jiang, H. F.; Neumann, H.; Beller, M.; Dixneuf, P. H.
Angew. Chem., Int. Ed. 2009, 121, 1709–1712.
€
(9) Dotz, K. H.; Stendel, J., Jr. Chem. Rev. 2009, 109, 3227–3274.
(10) (a) Dias, H. V. R.; Browning, R. G.; Polach, S. A.; Diyabalanage,
H. V. K.; Lovely, C. J. J. Am. Chem. Soc. 2003, 125, 9270–9271. (b)
ꢀ
ꢀ
Barluenga, J.; Vicente, R.; Barrio, P.; Lopez, L. A.; Tomas, M. J. Am.
Chem. Soc. 2004, 126, 5974–5975. (c) Barluenga, J.; Barrio, P.; Riesgo,
ꢀ
ꢀ
L.; Lopez, L. A.; Tomas, M. J. Am. Chem. Soc. 2007, 129, 14422–14426.
(d) Biju, A. T.; Wurz, N. E.; Glorius, F. J. Am. Chem. Soc. 2010, 132,
(12) (a) Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc.
2002, 124, 5260–5261. (b) Miki, K.; Yokoi, T.; Nishino, F.; Kato, Y.;
Washitake, Y.; Ohe, K.; Uemura, S. J. Org. Chem. 2004, 69, 1557–1564.
(c) Herndon, J. W.; Wang, H. J. Org. Chem. 1998, 63, 4564–4565. (d)
Jiang, D.; Herndon, J. W. Org. Lett. 2000, 2, 1267–1269. (e) Patti, R. K.;
Waynant, K. V.; Herndon, J. W. Org. Lett. 2011, 13, 2848–2851. (f)
Duan, S.; Sinha-Mahapatra, D. K.; Herndon, J. W. Org. Lett. 2008, 10,
ꢀ
ꢀ
5970–5971. (e) Barluenga, J.; Tomas, M.; Ballesteros, A.; Santamana, J.;
ꢀ ꢀ ꢀ
Brillet, C.; Garcıa-Granda, S.; Pinera-Nicolas, A.; Vazquez, J. T. J. Am.
´
Chem. Soc. 1999, 121, 4516–4517.
(11) (a) Cao, H.; Jiang, H. F.; Yao, W. J.; Liu, X. H. Org. Lett. 2009,
11, 1931–1933. (b) Cao, H.; Jiang, H. F.; Yuan, G. Q.; Chen, Z. W.; Qi,
C. R.; Huang, H. W. Chem.;Eur. J. 2010, 16, 10553–10559. (c) Cao, H.;
Jiang, H. F.; Huang, H. W.; Zhao, J. W. Org. Biomol. Chem. 2011, 21,
7257–7280.
ꢀ
ꢀ
1541–1544. (g) Vicente, R.; Gonzulez, J.; Riesgo, L.; Gonzalez, J.;
ꢀ
Lopez, L. A. Angew. Chem., Int. Ed. 2012, 51, 1–6.
B
Org. Lett., Vol. XX, No. XX, XXXX