Journal of the American Chemical Society
Communication
conversion of 1e to 1d, requiring the BN bond to change into a
B−N bond and the C−S bond to break. Thus, to achieve effective
PI of 1e to 1d, the HOMO should be localized on the BN
bond and the thiazoline unit, which is indeed the case for 1e. In
contrast, for 1d, there is a large contribution to the HOMO from
the dimethylbenzene ring (the C2 ring in Figure 3), which may
explain the inability of 1d to photoisomerize to 1e. The
calculations also showed that among 1a−1e, the thiazoline
isomers 1d and 1e have the lowest energy. Thus, the unusual
multistructural transformation is thermodynamically favored.
The calculated barriers for the b → c conversions follow the
order 1b < 3b ≈ 2b < 4b, in agreement with the experimentally
observed reactivity trend. The relative stability of c versus b (i.e.,
the energy difference of the two isomers) follows the order 1c
(−20 kJ mol−1) > 3c (−6 kJ mol−1) > 2c (5 kJ mol−1) > 4c (25 kJ
mol−1). The poor stability of 4c and the high 4b → 4c activation
barrier are consistent with the relatively high aromaticity of the
imidazolyl ring and are responsible for the low activity of the 4b
→ 4d isomerization. The greater activity of the 1b → 1d
conversion compared with the 3b → 3d conversion, despite the
somewhat lower aromaticity of the benzoxazole ring in 3b, may
arise because weaker oxazole N donor in 3b stabilizes TS3 less
effectively than the thiazole N donor in 1b. The observed
reactivity trend for b → d conversion likely results from both
aromaticity and the azole N donor strength. The activation
barriers of the b → a thermal reversal follow the order 1b < 2b <
3b ≈ 4b, and the relative stability of a versus b follows the order
4a > 1a ≈ 2a > 3a, which, along with the b → c reactivity trend, is
responsible for the observed relative distribution of a and d/e in
the thermal isomerization of b.
facilities. S.W. thanks the Canada Council for the Arts for the
Killam Research Fellowship. Y.-L.R. thanks the Government of
Canada for the Vanier Scholarship.
REFERENCES
■
(1) (a) Woolley, G. A. Nat. Chem. 2012, 4, 75. (b) Beharry, A. A.;
Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422. (c) Balzani, V.; Credi, A.;
Venturi, M. Molecular Devices and Machines; Wiley-VCH: Weinheim,
Germany, 2003. (d) Feringa, B. L. Molecular Switches; Wiley-VCH:
Weinheim, Germany, 2001.
(2) (a) Natansohn, A.; Rochon, P. Adv. Mater. 1999, 11, 1387.
(b) Natansohn, A.; Rochon, P. Chem. Rev. 2002, 102, 4139. (c) Kume,
S.; Nishihara, H. Dalton Trans. 2008, 3260. (d) Yokoyama, Y.; Saito, M.
In Chiral Photochemistry; Inoue, Y., Ramamurthy, Y., Eds.; Marcel
Dekker: New York, 2004; Chapter 6.
(3) (a) Colle, M.; Dinnebier, R. E.; Brutting, W. Chem. Commun. 2002,
̈
̈
23, 2908. (b) Colle, M.; Gmeiner, J.; Milius, W.; Hillebrecht, H.;
̈
Brutting, W. Adv. Funct. Mater. 2003, 13, 108. (c) Tamayo, A. B.;
Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau,
R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377.
̈
(4) (a) Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100,
1741 and references therein. (b) Irie, M. Chem. Rev. 2000, 100, 1685.
(c) Ko, C.-C.; Yam, V. W.-W. J. Mater. Chem. 2010, 20, 2063.
(5) (a) Rao, Y. L.; Amarne, H.; Zhao, S. B.; McCormick, T. M.; Martic,
S.; Sun, Y.; Wang, R. Y.; Wang, S. J. Am. Chem. Soc. 2008, 130, 12898.
(b) Amarne, H.; Baik, C.; Murphy, S. K.; Wang, S. Chem.Eur. J. 2010,
16, 4750. (c) Rao, Y. L.; Amarne, H.; Wang, S. Coord. Chem. Rev. 2012,
256, 759. (d) Rao, Y. L.; Amarne, H.; Lu, J. S.; Wang, S. Dalton Trans.
2013, 42, 638.
(6) (a) Ansorg, K.; Braunschweig, H.; Chiu, C. W.; Engels, B.; Gamon,
D.; Hugel, M.; Kupfer, T.; Radacki, K. Angew. Chem., Int. Ed. 2011, 50,
̈
2833. (b) Wilkey, J. D.; Schuster, G. B. J. Am. Chem. Soc. 1988, 110,
7569. (c) Rao, Y.-L.; Chen, L. D.; Mosey, N. J.; Wang, S. J. Am. Chem.
In summary, an unprecedented multistructural transformation
of B(2-phenylazolyl)Mes2 compounds has been demonstrated,
and mechanistic pathways for this remarkable phenomenon have
been established. Because the formation of the dark isomer b is
the key for the subsequent transformation, this work
demonstrates that light can be used as a convenient trigger or
switch to turn on unusual and complex structural/chemical
transformations of organoboron compounds. The intramolecu-
lar HAT observed in this system is facilitated by the relatively low
aromaticity of the azole rings. The ability of a BRR′ unit to
accommodate both BN and B−N bonds plays a key role in
promoting the reversible isomerization of d and e, illustrating the
potential use of organoboron chromophores in controlling
stereoselective ring-opening/closing processes of azole hetero-
cycles.
Soc. 2012, 134, 11026. (d) Nagura, K.; Saito, S.; Frohlich, R.; Glorius, F.;
̈
Yamaguchi, S. Angew. Chem., Int. Ed. 2012, 51, 7762. (e) Fukazawa, A.;
Yamaguchi, E.; Ito, E.; Yamada, H.; Wang, J.; Irle, S.; Yamaguchi, S.
Organometallics 2011, 30, 3870. (f) Fukazawa, A.; Yamada, H.;
Yamaguchi, S. Angew. Chem., Int. Ed. 2008, 47, 5582. (g) Kano, N.;
Yoshino, J.; Kawashima, T. Org. Lett. 2005, 7, 3909. (h) Yoshino, J.;
Kano, N.; Kawashima, T. Tetrahedron 2008, 64, 7774. (i) Wakamiya, A.;
Taniguchi, R.; Yamaguchi, S. Angew. Chem., Int. Ed. 2006, 45, 3170.
(7) The crystal structure data files for 2a, 3a, 1d, and 1e have been
deposited at the Cambridge Crystallographic Data Centre (CCDC
913143, 913142, 913141, and 913144, respectively).
(8) (a) Thiazole and Its Derivatives; Metzger, J. V., Ed.; The Chemistry
of Heterocyclic Compounds, Vol. 34; Wiley: New York, 1979; Part I, pp
132−133. (b) Hofmann, K. Imidazole and Its Derivatives, Part I; The
Chemistry of Heterocyclic Compounds, Vol. 6; Interscience: New York,
1953. (c) Clarke, G. M.; Sykes, P. J. Chem. Soc. C 1967, 1411.
(d) Katritzky, A. R.; Ramsden, C. A.; Joule, J. A.; Zhdankin, V. V.
Handbook of Heterocyclic Chemistry, 3rd ed.; Elsevier: Oxford, U.K.,
2010; Chapter 3.4, p 535.
(9) (a) Cui, Y.; Li, F. H.; Lu, Z. H.; Wang, S. Dalton Trans. 2007, 2634.
(b) Robertson, A. P. M.; Leitao, E. M.; Manners, I. J. Am. Chem. Soc.
2011, 133, 19322. (c) Brown, N. M. D.; Davidson, F.; Wilson, J. W. J.
Organomet. Chem. 1980, 192, 133. (d) Pestana, D. C.; Power, P. P. Inorg.
Chem. 1991, 30, 528. (e) Lichtblau, A.; Hausen, H. D.; Schwarz, W.;
Kaim, W. Inorg. Chem. 1993, 32, 73. (f) Okada, K.; Suzuki, R.; Oda, M. J.
Chem. Soc., Chem. Commun. 1995, 2069.
(10) (a) Bromm, L. O.; Laaziri, H.; Lhermitte, F.; Harms, K.; Knochel,
P. J. Am. Chem. Soc. 2000, 122, 10218. (b) Varela, J. A.; Pena, D.;
Goldfuss, B.; Polborn, K.; Knochel, P. Org. Lett. 2001, 3, 2395.
(c) Wood, S. E.; Rickborn, B. J. Org. Chem. 1983, 48, 555.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthesis and computational details, additional results, and
complete ref 11 (as ref 6S). This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(11) Frisch, M. J.; et al. Gaussian 09, revision B.01; Gaussian, Inc.:
Wallingford, CT, 2010.
ACKNOWLEDGMENTS
■
(12) (a) Toman, P.; Bartkowiak, W.; Nespurek, S.; Sworakowski, J.;
̌
̊
We thank the Natural Sciences and Engineering Research
Council of Canada for financial support and the High
Performance Computing Virtual Laboratory for computing
́
Zalesny, R. Chem. Phys. 2005, 316, 267. (b) Paramonov, S. V.; Lokshin,
V.; Fedorova, O. A. J. Photochem. Photobiol., C 2011, 12, 209.
3410
dx.doi.org/10.1021/ja400917r | J. Am. Chem. Soc. 2013, 135, 3407−3410