10.1002/anie.201813499
Angewandte Chemie International Edition
COMMUNICATION
[14]
[15]
[16]
[17]
R. Blomberg, H. Kries, D. M. Pinkas, P. R. E. Mittl, M. G. Grütter, H.
K. Privett, S. L. Mayo, D. Hilvert, Nature 2013, 503, 418–421.
M. Pott, T. Hayashi, T. Mori, P. R. E. Mittl, A. P. Green, D. Hilvert, J.
Am. Chem. Soc. 2018, 140, 1535–1543.
T. Hayashi, D. Hilvert, A. P. Green, Chem. Eur. J. 2018, 24, 11821–
11830.
H. Yang, A. M. Swartz, H. J. Park, P. Srivastava, K. Ellis-Guardiola,
D. M. Upp, G. Lee, K. Belsare, Y. Gu, C. Zhang, et al., Nat. Chem.
2018, 10, 318–324.
observed in LmrR_pAF_RMH and LmrR_pAF_RMHL, as
demonstrated by the drastic loss of activity in the respective F93
or N19 reversion variants (Fig. 2C, Table S1). It is, therefore,
tempting to suggest that histidine aides in the formation of the
iminium ion and/or transimination through proton shuffling or
positioning of ordered water molecules.[26,31,36,37]
In conclusion, our work demonstrates that designer
enzymes featuring an unnatural amino acid as a catalytic residue
can be privileged starting points for directed evolution campaigns.
Enhancing the inherent catalytic activity of an unnatural side chain
is feasible by identifying beneficial mutations in a protein scaffold.
Future efforts will focus on the structural and computational
analysis of tailored LmrR_pAF variants in order to pinpoint the
exact mechanisms by which these engineered designer enzymes
can display an almost 100-times higher turnover frequency when
compared to the parent variant. Lastly, we surmise that the
impressive improvements observed for LmrR_pAF are not limited
to an aniline side chain. Instead, we suggest that the introduction
and fine tuning of other organocatalysts[38–40] – which are versatile
yet notoriously slow – through genetic code expansion will result
in proficient designer enzymes for a wide variety of new-to-nature
reactions. Ultimately, such efforts could provide a promising route
for developing efficient protein catalysts for synthetically relevant
transformations.
[18]
[19]
[20]
N. M. Okeley, W. a van der Donk, Chem. Biol. 2000, 7, 159-71.
M. J. Appel, C. R. Bertozzi, ACS Chem. Biol. 2015, 10, 72–84.
H. A. Cooke, C. V. Christianson, S. D. Bruner, Curr. Opin. Chem. Biol.
2009, 13, 453–461.
D. D. Young, P. G. Schultz, ACS Chem. Biol. 2018, 13, 854−870.
A. Dumas, L. Lercher, C. D. Spicer, B. G. Davis, Chem. Sci. 2015, 6,
50–69.
C. L. Windle, K. J. Simmons, J. R. Ault, C. H. Trinh, A. Nelson, A. R.
Pearson, A. Berry, Proc. Natl. Acad. Sci. 2017, 114, 2610–2615.
F. Agostini, J. S. Völler, B. Koksch, C. G. Acevedo-Rocha, V.
Kubyshkin, N. Budisa, Angew. Chem. Int. Ed. 2017, 56, 9680–9703.
Angew. Chem. 2017, 129, 9810-9835
I. Drienovská, C. Mayer, C. Dulson, G. Roelfes, Nat. Chem. 2018, 10,
946–952.
E. H. Cordes, W. P. Jencks, J. Am. Chem. Soc. 1962, 84, 826–831.
A. Dirksen, S. Dirksen, T. M. Hackeng, P. E. Dawson, J. Am. Chem.
Soc. 2006, 128, 15602–15603.
P. K. Madoori, H. Agustiandari, A. J. M. Driessen, A.-M. M. W. H.
Thunnissen, EMBO J. 2009, 28, 156–166.
S. Yamasaki, E. Nikaido, R. Nakashima, K. Sakurai, D. Fujiwara, I.
Fujii, K. Nishino, Nat. Commun. 2013, 4, 1–7.
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
J. W. Chin, S. W. Santoro, A. B. Martin, D. S. King, L. Wang, P. G.
Schultz, J. Am. Chem. Soc. 2002, 124, 9026–9027.
P. Crisalli, E. T. Kool, J. Org. Chem. 2013, 78, 1184–1189.
I. Drienovská, A. Rioz-Martínez, A. Draksharapu, G. Roelfes, Chem.
Sci. 2015, 6, 770–776.
[31]
[32]
[33]
[34]
I. Drienovská, L. Alonso-Cotchico, P. Vidossich, A. Lledós, J. D.
Maréchal, G. Roelfes, Chem. Sci. 2017, 8, 7228–7235.
L. Villarino, K. E. Splan, E. Reddem, L. Alonso-Cotchico, C. Gutiérrez
de Souza, A. Lledós, J. D. Maréchal, A. M. W. H. Thunnissen, G.
Roelfes, Angew. Chem. Int. Ed. 2018, 57, 7785–7789. Angew. Chem.
2018, 130, 7911–7915.
Acknowledgements
The authors thank Dr. I. Drienovská for helpful advice throughout the
project. This work was supported by the European Research Council (ERC
starting grant no. 280010) and the Netherlands Organisation for Scientific
Research (NWO, Vici grant 724.013.003, and Veni grant 722.017.007).
G.R. acknowledges support from the Ministry of Education Culture and
Science (Gravitation programme no. 024.001.035). C.M. acknowledges a
Marie Skłodowska Curie Individual Fellowship (project no. 751509). We
acknowledge DESY (Hamburg, Germany), a member of the Helmholtz
Association HGF, for the provision of experimental facilities. Parts of this
research were carried out at PETRA III and we would like to thank
beamline staff for assistance in using beamline P11.
[35]
E. T. Kool, D. Park, P. Crisalli, J. Am. Chem. Soc. 2013, 135, 17663–
17666.
[36]
[37]
P. Crisalli, E. T. Kool, Org. Lett. 2013, 15, 1646–1649.
A. Dirksen, T. M. Hackeng, P. E. Dawson, Angew. Chem. Int. Ed.
2006, 45, 7581–7584. Angew. Chem. 2006, 118, 7743–7746.
E. Zandvoort, E. M. Geertsema, B. J. Baas, W. J. Quax, G. J.
Poelarends, Angew. Chem. Int. Ed. 2012, 51, 1240–1243. Angew.
Chem. 2012, 124, 1266-1269.
Y. Miao, M. Rahimi, E. M. Geertsema, G. J. Poelarends, Curr. Opin.
Chem. Biol. 2015, 25, 115–123.
A. R. Nödling, K. Świderek, R. Castillo, J. W. Hall, A. Angelastro, L.
C. Morrill, Y. Jin, Y. H. Tsai, V. Moliner, L. Y. P. Luk, Angew. Chem.
Int. Ed. 2018, 57, 12478–12482. Angew. Chem. 2018, 130, 12658–
12662.
[38]
[39]
[40]
Keywords: Directed evolution • Enzyme catalysis • Enzyme
Design • Organocatalysis • Hydrazones
[1]
[2]
[3]
V. Nanda, R. L. Koder, Nat. Chem. 2010, 2, 15–24.
D. Hilvert, Annu. Rev. Biochem. 2013, 82, 447–70.
S. C. Hammer, A. M. Knight, F. H. Arnold, Curr. Opin. Green Sustain.
Chem. 2017, 7, 23–30.
[4]
D. N. Woolfson, G. J. Bartlett, A. J. Burton, J. W. Heal, A. Niitsu, A.
R. Thomson, C. W. Wood, Curr. Opin. Struct. Biol. 2015, 33, 16–26.
P.-S. Huang, S. E. Boyken, D. Baker, Nature 2016, 537, 320–327.
G. Kiss, N. Çelebi-Ölçüm, R. Moretti, D. Baker, K. N. Houk, Angew.
Chem. Int. Ed. 2013, 52, 5700–5725. Angew. Chem.. 2013, 125,
5810–5836.
[5]
[6]
[7]
[8]
[9]
M. P. Frushicheva, M. J. L. Mills, P. Schopf, M. K. Singh, R. B. Prasad,
A. Warshel, Curr. Opin. Chem. Biol. 2014, 21, 56–62.
O. F. Brandenberg, R. Fasan, F. H. Arnold, Curr. Opin. Biotechnol.
2017, 47, 102–111.
F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni, V.
Lebrun, R. Reuter, V. Köhler, J. C. Lewis, T. R. Ward, Chem. Rev.
2018, 118, 142–231.
[10]
H. Renata, Z. J. Wang, F. H. Arnold, Angew. Chem. Int. Ed. 2015, 54,
3351–3367. Angew. Chem. 2015, 127, 3408–3426.
M. S. Packer, D. R. Liu, Nat. Rev. Genet. 2015, 16, 379–394.
C. Zeymer, D. Hilvert, Annu. Rev. Biochem. 2018, 87, 131–157.
R. Obexer, A. Godina, X. Garrabou, P. R. E. E. Mittl, D. Baker, A. D.
Griffiths, D. Hilvert, Nat. Chem. 2017, 9, 50–56.
[11]
[12]
[13]
This article is protected by copyright. All rights reserved.