172
N. M. Garrido et al.
LETTER
178. The authors also thank Dr. A. M. Lithgow for work on the
NMR spectra and Dr. César Raposo for the mass spectra. C.T.N.
thanks Junta de Castilla y León for a FPI doctoral fellowship.
M.; Díez, D.; Domínguez, S. H.; Davies, S. G. Tetrahedron:
Asymmetry 1997, 8, 2683.
(11) Scheffer, J. R.; Wostradowski, R. A. J. Org. Chem. 1972, 37,
4317.
(12) (a) Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson,
J. E. Tetrahedron: Asymmetry 2012, 23, 1111. This review
updates the scope and applications of the conjugate addition
of enantiomerically pure lithium amides published in:
(b) Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron:
Asymmetry 2005, 16, 2833.
(13) Nieto, C. T. PhD Dissertation, in progress.
(14) The stereochemistry of this compound has been
demonstrated in references 10d,g,c; the latter reports that
(R)-6-methylcyclohex-1-ene carboxylate was obtained from
an analogue of the enantiomer of 14.
(15) Yoon, N. M.; Chwang, S. P.; Krishnamurthy, S.; Stocky, T.
P.; Brown, H. C. J. Org. Chem. 1973, 38, 2786.
(16) Barco, A.; Baricordi, N.; Benetti, S.; De Risi, C.; Pollinib, G.
P.; Zanirato, V. Tetrahedron 2007, 63, 4278.
(17) Ella-Menye, J. R.; Nie, X.; Wang, G. Carbohydr. Res. 2008,
343, 1743.
References and Notes
(1) (a) Juaristi, E.; Soloshonok, V. A. Enantioselective
Synthesis of β-Amino Acids, 2nd ed.; John Wiley and Sons:
Hoboken, 2005. (b) Seebach, D.; Matthews, J. L. Chem.
Commun. 1997, 21, 2015.
(2) (a) Hanessian, S.; Auzzas, L. Acc. Chem. Res. 2008, 41,
1241. (b) Price, J. L.; Horne, W. S.; Gellman, S. H. J. Am.
Chem. Soc. 2010, 132, 12378. (c) Gellman, S. H. Acc.
Chem. Res. 1998, 31, 173.
(3) (a) Trost, B. M.; Tang, W.; Toste, F. D. J. Am. Chem. Soc.
2005, 127, 14785. (b) Gates, M.; Tschudi, G. J. Am. Chem.
Soc. 1952, 74, 1109. (c) Toth, J. E.; Fuchs, P. L. J. Org.
Chem. 1987, 52, 473.
(4) Staub, G. M.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J.
Am. Chem. Soc. 1992, 114, 1015.
(5) (a) Kong, F.; Andersen, R. J.; Allen, T. M. J. Am. Chem. Soc.
1994, 116, 6007. (b) Proto, S.; Amat, M.; Pérez, M.;
Ballette, R.; Romagnoli, F.; Mancinelli, A.; Bosch, J. Org.
Lett. 2012, 14, 3916.
(6) Fujii, K.; Sivonen, K.; Adachi, K.; Noguchi, K.; Shimizu,
Y.; Sano, H.; Hirayama, K.; Suzuki, M.; Harada, K.-I.
Tetrahedron Lett. 1997, 38, 5529.
(7) Quirante, J.; Escolano, C.; Diaba, F.; Bonjoch, J.
Heterocycles 1999, 50, 731.
(8) Aurrecoechea, J. M.; Gorgojo, J. M.; Saornil, C. J. Org.
Chem. 2005, 70, 9640.
(9) Diaba, F.; Bonjoch, J. Org. Biomol. Chem. 2009, 7, 2517.
(10) (a) Garrido, N. M.; Rubia, A. G.; Nieto, C.; Díez, D. Synlett
2010, 587. (b) Garrido, N. M.; Díez, D.; Domínguez, S. H.;
Sanchez, M. R.; García, M.; Urones, J. G. Molecules 2006,
11, 435. (c) Garrido, N. M.; Díez, D.; Domínguez, S. H.;
García, M.; Sánchez, M. R.; Davies, S. G. Tetrahedron:
Asymmetry 2006, 17, 2183. (d) Davies, S. G.; Díez, D.;
Domínguez, S. H.; Garrido, N. M.; Kruchinin, D.; Price, P.
D.; Smith, A. D. Org. Biomol. Chem. 2005, 3, 1284.
(e) Urones, J. G.; Garrido, N. M.; Díez, D.; El Hammoumi,
M. M.; Domínguez, S. H.; Casaseca, J. A.; Davies, S. G.;
Smith, A. D. Org. Biomol. Chem. 2004, 2, 364. (f) Garrido,
N. M.; El Hammoumi, M. M.; Díez, D.; García, M.; Urones,
J. G. Molecules 2004, 9, 373. (g) Urones, J. G.; Garrido, N.
M.; Díez, D.; Domínguez, S. H.; Davies, S. G. Tetrahedron:
Asymmetry 1999, 10, 1637. (h) Urones, J. G.; Garrido, N.
(18) Typical Procedure
Mesylate 18 (18 mg, 0.047 mmol) was dissolved in CH2Cl2–
TFA 1:1 (5 mL) and stirred 2 h at r.t. Solvent was
evaporated, and the crude was further dissolved in EtOH–
Et3N 1:1 (5 mL). The mixture was refluxed at 80 °C for 20
h. The solvent was again evaporated and the crude dissolved
in EtOAc (30 mL) and extracted with HCl (0.5 M, 30 mL).
The aqueous phase was basified to pH 8 with NaOH (1 M)
and extracted with EtOAc. The organic phase was dried over
Na2SO4, filtered, and the solvent was removed at reduced
pressure. Purification of the crude product by flash
chromatography (CHCl3–MeOH, 9:1) provided 21 (7.1 mg,
84%) as an oil. [α]D20 = –4.01 (c 0.71, CHCl3). 1H NMR (400
MHz, CDCl3): δ = 1.65–2.24 (m, 8 H, H-4, H-6, H-7, H-8),
2.52 (s, 1 H, H-5), 3.06 (s, 1 H, H-9), 3.27 (dd, J = 13.5, 7.3
Hz, 1 H, H-3eq), 3.44 (dt, J = 13.5, 8.0 Hz, 1 H, H-3ax), 3.73
(s, 3 H, OCH3), 3.91 (br s, 1 H, H-1), 5.51 (br s, 1 H, NH).
IR (neat): 3396, 2931, 2858, 1733, 1426, 1384, 1287, 1203,
1124, 1405, 1023 cm–1. 13C NMR (50 MHz, CDCl3): δ =
19.8, 23.4, 25.5, 26.9, 28.9, 40.1, 43.6, 47.7, 52.7, 171.3.
HRMS: m/z calcd for C10H18NO2 [M + H]: 184.1332; found:
184.1313.
(19) All the obtained products have been fully characterized
including high-resolution mass spectrometry.
(20) Kulig, K.; Szwaczkiewicz, M. Mini-Rev. Med. Chem. 2008,
8, 1214.
Synlett 2013, 24, 169–172
© Georg Thieme Verlag Stuttgart · New York