ChemComm
Communication
of ROS. Cellular studies showed that 2 has a marked improve-
ment of preventing cellular death, induced by oxidative stress.
The authors are grateful for generous financial support from
TCU RCAF (to KG) and the Robert A. Welch Foundation (to KG,
P-1760), NIH (to JWS, P01 AG022550 and P01 AGAG027956) and
NIH training grant (to TER, T32 AG020494).
Notes and references
‡ Pyclen = 1,4,7,10-Tetraaza-2,6-pyridinophane, Cyclen = 1,4,7,10-Tetraaza-
cyclododecane, Hydroxylpyclen = 3,6,9,15-Tetraazabicyclo[9.3.1]pentadeca-
1(15),11,13-trien-13-ol, DCFH
= Dichlorodihydrofluorescein, BHT =
Fig. 3 DCFH-DA fluorescent response in FRDA cells after 12 hours exposure to
Butylhydroxytoluene, DPPH = 2,2-Diphenyl-1-picrylhydrazyl, BSO = Buthio-
nine sulphoximine, CCA = Coumarin-3-carboxylic acid, FRDA = Friedreich’s
ataxia.
BSO [1 mM] showing dose dependence with
1 and 2. n = 8. *Indicates
significance with respect to BSO control and a p value o 0.05.
1 S. Gandhi and A. Y. Abramov, Oxid. Med. Cell. Longevity, 2012,
2012, 428010.
2 J. K. Andersen, Nat. Med., 2004, 10(Suppl.), S18–S25.
3 K. Jomova, D. Vondrakova, M. Lawson and M. Valko, Mol. Cell.
Biochem., 2010, 345, 91–104.
4 A. I. Bush and R. E. Tanzi, Neurotherapeutics, 2008, 5, 421–432.
5 L. R. Perez and K. J. Franz, Dalton Trans., 2010, 39, 2177–2187.
6 S. Rivera-Mancia, I. Perez-Neri, C. Rios, L. Tristan-Lopez,
L. Rivera-Espinosa and S. Montes, Chem.–Biol. Interact., 2010, 186,
184–199.
7 L. Guilloreau, S. Combalbert, A. Sournia-Saquet, H. Mazarguil and
P. Faller, ChemBioChem, 2007, 8, 1317–1325.
8 L. Rossi, M. F. Lombardo, M. R. Ciriolo and G. Rotilio, Neurochem.
Res., 2004, 29, 493–504.
9 Y. H. Hung, A. I. Bush and R. A. Cherny, JBIC, J. Biol. Inorg. Chem.,
2010, 15, 61–76.
10 M. T. Fodero-Tavoletti, V. L. Villemagne, C. C. Rowe, C. L. Masters,
K. J. Barnham and R. Cappai, Int. J. Biochem. Cell Biol., 2011, 43,
1247–1251.
Fig. 4 Calcein AM viability assay of FRDA cells after 48 hour exposure to BSO
[1 mM] followed by addition of 2. n = 8 for each sample. *Indicates significance
with respect to BSO control and a p value o 0.05
11 E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev., 2008, 108,
1517–1549.
12 J. J. Braymer, A. S. DeToma, J. S. Choi, K. S. Ko and M.-H. Lim, Int. J.
Alzheimer’s Dis., 2011, 1–9.
13 F. Kielar, M. E. Helsel, Q. Wang and K. J. Franz, Metallomics, 2012, 4,
899–909.
14 L. E. Scott and C. Orvig, Chem. Rev., 2009, 109, 4885–4910.
15 E. Crabb and E. A. Moore, Metals and Life, Chelation Therapy,
Springer, 2009.
Preliminary 13C NMR data suggest electrophilic –OH addition
onto the pyridol ring, when 2 is incubated with H2O2; consis-
tent with similar compounds reported in literature.18–20
Finally, cell viability studies using live-cell penetrating
Calcein AM as a fluorophore show that 2 protects cells against
BSO insult ranging from 1.25 nM–12.5 mM, with an EC50 31.46 ꢂ
4.96 nM (Fig. 4). This dose response is visualized in the 16 P. A. Adlard, R. A. Cherny, D. I. Finkelstein, E. Gautier, E. Robb,
M. Cortes, I. Volitakis, X. Liu, J. P. Smith and K. Perez, et al., Neuron,
fluorescent cell images, Fig. S3 (ESI†), which show that cell
viability increases with an increasing concentration of 2. An
2008, 59, 43–55.
17 K. M. Lincoln, T. E. Richardson, L. Rutter, P. Gonzalez,
interesting feature to be noted from these cellular studies is the
fact that both 1 and 2 are capable of entering cells and do not
appear to interrupt the vital functions of cytosolic metalloen-
zymes, presumably via metal ion extraction.
Finally, the macrocyclic compound 2 is a chelator capable of
preventing metal-induced amyloid formation as well as disag-
J. W. Simpkins and K. N. Green, ACS Chem. Neurosci., 2012, 3,
919–927.
18 D. E. Green, M. L. Bowen, L. E. Scott, T. Storr, M. Merkel,
K. Bohmerle, K. H. Thompson, B. O. Patrick, H. J. Schugar and
C. Orvig, Dalton Trans., 2010, 39, 1604–1615.
19 J. A. Zazo, J. A. Casas, A. F. Mohedano, M. A. Gilarranz and
J. J. Rodriguez, Environ. Sci. Technol., 2005, 39, 9295–9302.
20 S. Steenken and P. Oneill, J. Phys. Chem., 1979, 83, 2407–2412.
gregation as evidenced by Turbidity and Tyr-10 fluorescence 21 V. Koleckar, K. Kubikova, Z. Rehakova, K. Kuca, D. Jun, L. Jahodar
and L. Opletal, Mini–Rev. Med. Chem., 2008, 8, 436–447.
studies which largely parallel the activity observed with 1
´
22 V. Felix, J. Costa, R. Delgado, M. G. B. Drew, M. T. Duarte and
(Fig. S4–S6, ESI†). These studies are consistent with the reactivity
of former chelating systems reported by others as well.25–27
In conclusion, a new small molecule 2 has shown potential
as a metal-binding and potent antioxidant agent. The antiox-
idant capacity of 1 was enhanced dramatically via conversion of
the pyridine backbone to a pyridol, 2. We have shown that this
compound is capable of reducing stable radicals, such as DPPH
and halts CuII/I redox cycling responsible for the production
C. Resende, Dalton Trans., 2001, 1462–1471.
23 C. Hureau and P. Faller, Biochimie, 2009, 91, 1212–1217.
24 T. E. Richardson, S. H. Yang, Y. Wen and J. W. Simpkins, Endocrinology,
2011, 152, 2742–2749.
25 L. E. Scott, B. D. G. Page, B. O. Patrick and C. Orvig, Dalton Trans.,
2008, 6364–6367.
26 W. Chen, X. Wang, Y. He, C. Zhang, Z. Wu, K. Liao, J. Wang and
Z. Guo, Inorg. Chem., 2009, 48, 5801–5809.
27 P. Faller, C. Hureau, P. Dorlet, P. Hellwig, Y. Coppel, F. Collin and
B. Alies, Coord. Chem. Rev., 2012, 256, 2381–2396.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.