10.1002/anie.201806011
Angewandte Chemie International Edition
COMMUNICATION
purification; combined yields determined after purification by flash
chromatography on silica gel; enantiomeric excesses determined by HPLC
analysis on chiral stationary phases). n.d. = not determined.
[1]
[2]
For reviews of the Nazarov cyclization, see: a) M. G. Vinogradov, O. V.
Turova, S. G. Zlotin, Org. Biomol. Chem. 2017, 15, 8245–8269; b) D. R.
Wenz, J. Read de Alaniz, Eur. J. Org. Chem. 2015, 23–37; c) W. T.
Spencer III, T. Vaidya, A. J. Frontier, Eur. J. Org. Chem. 2013, 3621–
3633; d) T. Vaidya, R. Eisenberg, A. J. Frontier, ChemCatChem 2011,
3, 1531–1548.
Indole-derived 6 had recently been a challenging precursor
in an investigation by Zhu, Zhou, and co-workers using
cooperative catalysis (6→7 with 59% ee (cis) and 97% ee
(trans) and cis:trans = 60:40).[13] Our protocol converted 6
predominantly into the cis isomer of 7 in high yield but the
enantiomeric excess was low (Scheme 3, top); the relative
configuration of 7 was established as cis by X-ray diffraction (the
molecular structure is reported in the Supporting Information).
Also, the unactivated substrate 8 did undergo the ring closure
but led to regioisomeric 9 and 10 with poor enantiomeric
excesses (Scheme 3, bottom). These systems had furnished the
best results with Rawal’s method [e.g., 9 (trans): 78%, 86% ee,
trans:cis > 95:5).[9]
For selected examples with BF3·OEt2 as catalyst, see: a) K. E. Harding,
K. S. Clement, J. Org. Chem. 1984, 49, 3870–3871; b) K. E. Harding, K.
S. Clement, C.-Y. Tseng, J. Org. Chem. 1990, 55, 4403–4410; c) P.
Chiu, S. Li, Org. Lett. 2004, 6, 613–616; d) R. D. Mazzola, Jr., T. D.
White, H. R. Vollmer-Snarr, F. G. West, Org. Lett. 2005, 7, 2799–2801;
e) P. Larini, A. Guarna, E. G. Occhiato, Org. Lett. 2006, 8, 781–784.
a) M. A. Beckett, D. S. Brassington, S. J. Coles, M. B. Hursthouse,
Inorg. Chem. Commun. 2000, 3, 530–533; for an overview of the Lewis
acidity of several electron-deficient boranes, see: b) I. B. Sivaev, V. I.
Bregadze, Coord. Chem. Rev. 2014, 270-271, 75–88.
[3]
[4]
K. Komatsuki, Y. Sadamitsu, K. Sekine, K. Saito, T. Yamada, Angew.
Chem. Int. Ed. 2017, 56, 11594–11598; Angew. Chem. 2017, 129,
11752–11756.
[5]
[6]
M. Mewald, R. Fröhlich, M. Oestreich, Chem. Eur. J. 2011, 17, 9406–
9414.
a) L. Süsse, J. Hermeke, M. Oestreich, J. Am. Chem. Soc. 2016, 138,
6940–6943; b) J. Hermeke, M. Mewald, E. Irran, M. Oestreich,
Organometallics 2014, 33, 5097–5100.
[7]
For Lewis acid-catalyzed enantioselective Nazarov cyclizations, see: a)
V. K. Aggarwal, A. J. Belfield, Org. Lett. 2003, 5, 5075–5078; b) I. Walz,
A. Togni, Chem. Commun. 2008, 4315–4317; c) K. Yaji, M. Shindo,
Synlett 2009, 2524–2528; d) M. Kawatsura, K. Kajita, S. Hayase, T.
Itoh, Synlett 2010, 1243–1246; e) P. Cao, C. Deng, Y.-Y. Zhou, X.-L.
Sun, J.-C. Zheng, Z. Xie, Y. Tang, Angew. Chem. Int. Ed. 2010, 49,
4463–4466; Angew. Chem. 2010, 122, 4565–4568; f) N. Shimada, C.
Stewart, W. F. Bow, A. Jolit, K. Wong, Z. Zhou, M. A. Tius, Angew.
Chem. Int. Ed. 2012, 51, 5727–5729; Angew. Chem. 2012, 124, 5825–
5827; g) Z. Xu, H. Ren, L. Wang, Y. Tang, Org. Chem. Front. 2015, 2,
811–814; h) S. Raja, M. Nakajima, M. Rueping, Angew. Chem. Int. Ed.
2015, 54, 2762–2765; Angew. Chem. 2015, 127, 2801–2804; i) K.
Kitamura, N. Shimada, C. Stewart, A. C. Atesin, T. A. Ateşin, M. A. Tius,
Angew. Chem. Int. Ed. 2015, 54, 6288–6291; Angew. Chem. 2015, 127,
6386–6389.
Scheme 3. Limitations the enantioselective Nazarov cyclization catalyzed by
(S)-3·DMS (cis:trans and regioisomeric ratios determined by 1H NMR
spectroscopy prior to purification; combined yields determined after purification
by flash chromatography on silica gel; enantiomeric excesses determined by
HPLC analysis on chiral stationary phases.
[8]
[9]
a) G. Liang, S. N. Grandl, D. Trauner, Org. Lett. 2003, 5, 4931–4934; b)
G. Liang, D. Trauner, J. Am. Chem. Soc. 2004, 126, 9544–9545.
a) G. E. Hutson, Y. E. Türkmen, V. H. Rawal, J. Am. Chem. Soc. 2013,
135, 4988–4991; for a Cr(III)-salen complex embedded in a metal-
To summarize, we have disclosed here an efficient
enantioselective Nazarov cyclization catalyzed by an axial chiral
variant of B(C6F5)3. As in previous but unrelated work,[6a] the
steric hindrance exerted by the 3,3’-disubstituted binaphthyl
backbone of the boron Lewis acid (S)-3·DMS is crucial for
achieving high enantioinduction. Enantiomeric excesses are
high (up to 96% ee) and cis:trans ratios often synthetically useful.
Our work complements the existing metal-catalyzed
procedures[8,9] and important contributions by Rueping and co-
workers using chiral Brønsted acids.[10] This electrocyclization
also expands the application of B(C6F5)3 and its chiral congeners
to carbon–carbon bond-forming reactions.[11]
organic framework as
a heterogeneous catalyst for the Nazarov
cyclization, see: b) Q. Xia, Y. Liu, Z. Li, W. Gong, Y. Cui, Chem.
Commun. 2016, 52, 13167–13170.
[10] For Brønsted acid-catalyzed enantioselective Nazarov cyclizations of
this substrate type, see: a) M. Rueping, W. Ieawsuwan, A. P.
Antonchick, B. J. Nachtsheim, Angew. Chem. Int. Ed. 2007, 46, 2097–
2100; Angew. Chem. 2007, 119, 2143–2146; b) M. Rueping, W.
Ieawsuwan, Adv. Synth. Catal. 2009, 351, 78–84; c) G. Pousse, A.
Devineau, V. Dalla, L. Humphreys, M.-C. Lasne, J. Rouden, J. Blanchet,
Tetrahedron 2009, 65, 10617–10622; d) S. Raja, W. Ieawsuwan, V.
Korotkov, M. Rueping, Chem. Asian J. 2012, 7, 2361–2366.
[11] For an up-to-date review on B(C6F5)3-catalyzed carbon–carbon bond
formation reactions, see: a) B. Rao, R. Kinjo, Chem. Asian J. 2018, 13,
1279–1292; for representative examples, see: b) K. Ishihara, N. Hanaki,
M. Funahashi, M. Miyata, H. Yamamoto, Bull. Chem. Soc. Jpn. 1995,
68, 1721–1730; c) C. Chen, M. Harhausen, R. Liedtke, K. Bussmann, A.
Fukazawa, S. Yamaguchi, J. L. Petersen, C. G. Daniliuc, R. Fröhlich, G.
Kehr, G. Erker, Angew. Chem. Int. Ed. 2013, 52, 5992–5996; Angew.
Chem. 2013, 125, 6108–6112; d) J.-H. Zhou, B. Jiang, F.-F. Meng, Y.-
H. Xu, T.-P. Loh, Org. Lett. 2015, 17, 4432–4435; e) S. Tamke, Z.-W.
Qu, N. A. Sitte, U. Flörke, S. Grimme, J. Paradies, Angew. Chem. Int.
Ed. 2016, 55, 4336–4339; Angew. Chem. 2016, 128, 4408–4411; f) Y.
Soltani, L. C. Wilkins, R. L. Melen, Angew. Chem. Int. Ed. 2017, 56,
11995–11999; Angew. Chem. 2017, 129, 12157–12161.
Acknowledgements
L.S. and M.V. were supported through an Einstein Visiting
Fellowship of the Einstein Foundation Berlin to Prof. Dr. Douglas
W. Stephan (2016–2019). M.O. thanks the Einstein Foundation
Berlin for an endowed professorship. We are grateful to Sofiya
Marinova for the verification of our early findings.
Keywords: asymmetric catalysis • boron • C–C bond formation •
[12] G. J. P. Britovsek, J. Ugolotti, A. J. P. White, Organometallics 2005, 24,
1685–1691.
electrocyclic reactions • Lewis acids
[13] G.-P. Wang, M.-Q. Chen, S.-F. Zhu, Q.-L. Zhou, Chem. Sci. 2017, 8,
7197–7202.
This article is protected by copyright. All rights reserved.