addition to N-tosylimines and aldehydes using a pyridine
and oxime as directing groups, respectively. Herein we
report the direct RhIII-catalyzed alkenyl CꢀH bond addi-
tion to isocyanates, wherein the directing group for CꢀH
bond functionalization serves an auxiliary role of capturing
the resulting amide group to afford synthetically and phar-
maceutically important 5-ylidene-pyrrol-2(5H)-ones (eq 1).
More importantly, in contrast to previous methods,3,4 this
RhIII-catalyzed annulation reaction9 proceeded in the ab-
sence of any additives and environmentally hazardous waste
production under mild and neutral reaction conditions.
As indicated in Table 1, we initiated our studies by con-
ducting the RhIII-catalyzed addition of R,β-unsaturated
oxime (1a) to p-tolyl isocyanate (2a). Although the use of
5 mol % of (Cp*RhCl2)2 proved unsuccessful in catalyzing
this reaction (entry 1), (Cp*RhCl2)2 (5 mol %) in the
presence of AgSbF6 (20 mol %) in THF at 100 °C provided
the desired product 3a in 60% yield (entry 2). The prepared
RhIII precursor [Cp*Rh(CH3CN)3](SbF6)2 showed super-
ior reactivity compared to that observed with (Cp*RhCl2)2
and AgSbF6 (entry 3). A screen of solvents revealed DCE
tobesuperiortoTHF (entries 3ꢀ6). A longer reaction time
and a higher temperature (120 °C) did not result in any
reduction in yield (entry 7) and lowering the temperature
led to a slightly low conversion (entry 8). A lower catalyst
Figure 1. Structures of some biologically important 5-ylidene-
pyrrol-2(5H)-ones.
via a chelation-assisted electrophilic metalation of the
ortho C(sp2)ꢀH bond. However, applying these directed
arene CꢀH functionalization methods to alkenes is still
challenging due to the increased reactivity and lability of
olefins. Until now, only a few examples have been reported.8
Recently, Bergman and Ellman reported the addition
of alkenyl CꢀH bonds of enamides to isocyanates.8a Very
recently, Shi8b and Ellman8c reported alkenyl CꢀH bond
(5) For selected recent reviews on CꢀH bond functionalization, see:
(a) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (b)
Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Aldrichimica Acta 2012,
45, 31. (c) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc.
Chem. Res. 2012, 45, 814. (d) Wencel-Delord, J.; Droge, T.; Liu, F.;
Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (e) Yeung, C. S.; Dong, V. M.
Chem. Rev. 2011, 111, 1215. (f) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang,
S. Chem. Soc. Rev. 2011, 40, 5068. (g) Ackermann, L. Chem. Rev. 2011,
111, 1315. (h) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111,
1780. (i) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010,
110, 624. (j) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew.
Chem., Int. Ed. 2009, 48, 5094. (k) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147. (l) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.;
Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (m) Satoh, T.;
Miura, M. Chem.;Eur. J. 2010, 16, 11212. (n) Shi, R. B. F.; Engle,
K. M.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242. (o) Park,
Y. J.; Park, J. W.; Hun, C. H. Acc. Chem. Res. 2008, 41, 222. (p) Lewis,
J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013.
(q) Godula, K.; Sames, D. Science 2006, 312, 67. For selected recent
examples, see: (r) Yang, L.; Qian, B.; Huang, H. Chem.;Eur. J. 2012,
18, 9511. (s) Qian, B.; Shi, D.; Yang, L.; Huang, H. Adv. Synth. Catal.
2012, 354, 2146. (t) Zhao, P.; Niu, R.; Wang, F.; Han, K.; Li, X. Org.
Lett. 2012, 14, 4166. (u) Zhao, P.; Wang, F.; Han, K.; Li, X. Org. Lett.
2012, 14, 5506. (v) Li, H.; Li, Y.; Zhang, X.-S.; Chen, K.; Wang, X.; Shi,
Z.-J. J. Am. Chem. Soc. 2011, 133, 15244. (w) Zeng, R.; Fu, C.; Ma, S.
J. Am. Chem. Soc. 2012, 134, 9597. (x) Xie, P.; Xie, Y.; Qian, B.; Zhou,
H.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 9902. (y) Jia, X.;
Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120.
(z) Chan, C.-W.; Zhou, Z.; Yu, W.-Y. Adv. Synth. Catal. 2011, 353, 2999.
(aa) Xiao, F.; Shuai, Q.; Zhao, F.; Basle, O.; Deng, G.; Li, C.-J. Org.
Lett. 2011, 13, 1614.
(7) For the rhodium(III)-catalyzed direct addition of arene CꢀH
bonds to imines, isocyanates, isocyanide, and azides, see: (a) Tsai, A. S.;
Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2011,
133, 1248. (b) Li, Y.; Li, B.-J.; Wang, W.-H.; Huang, W.-P.; Zhang,
X.-S.; Chen, K.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 2115. (c)
Tauchert, M. E.; Incarvito, C. D.; Rheingold, A. L.; Bergman, R. G.;
Ellman, J. A. J. Am. Chem. Soc. 2012, 134, 1482. (d) Hesp, K. D.;
Bergman, R. G.; Ellman, J. A. Org. Lett. 2012, 14, 2304. (e) Li, Y.;
Zhang, X.-S.; Li, H.; Wang, W.-H.; Chen, K.; Li, B.-J.; Shi, Z.-J. Chem.
Sci. 2012, 3, 1634. (f) Zhou, B.; Yang, Y.; Lin, S.; Li, Y. Adv. Synth.
Catal. 2013, 355, 360. (g) Zhu, C.; Xie, W.; Falck, J. R. Chem.;Eur. J.
2011, 17, 12591. (h) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim,
S. H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110. (i) Shi, J.; Zhou, B.;
Yang, Y.; Li., Y. Org. Biomol. Chem. 2012, 10, 8953. (j) Ryu, J.; Shin, K.;
Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904.
(k) Zhou, B.; Hou, W.; Yang, Y.; Li, Y. Chem.-Eur. J. 2013, 19, 4701.
(8) (a) Hesp, K. D.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2011, 133, 11430. (b) Li, Y.; Zhang, X.-S.; Zhu, Q.-L.; Shi, Z.-J. Org.
Lett. 2012, 14, 4498. (c) Lian, Y.; Huber, T.; Hesp, K. D.; Bergman,
R. G.; Ellman, J. A. Angew. Chem., Int. Ed. 2013, 52, 629.
(9) Selected rhodium(III)-catalyzed annulation reaction using non-
polar alkynes and alkenes as substrates: (a) Li, B.-J.; Wang, H.-Y.; Zhu,
Q.-L.; Shi, Z.-J. Angew. Chem., Int. Ed. 2012, 51, 3948. (b) Wang, D.;
Wang, F.; Song, G.; Li, X. Angew. Chem., Int. Ed. 2012, 124, 12514. (c)
Pham, M. V.; Ye, B.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 10610.
(d) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem. Soc.
2011, 133, 2154. (e) Wei, X.; Zhao, M.; Du, Z.; Li, X. Org. Lett. 2011, 13,
4636. (f) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc.
2011, 133, 6449. (g) Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou, K.
Angew. Chem., Int. Ed. 2011, 50, 1338. (h) Patureau, F. W.; Glorius, F.
Angew. Chem., Int. Ed. 2011, 50, 1977. (i) Su, Y.; Zhao, M.; Han, K.;
Song, G.; Li, X. Org. Lett. 2010, 12, 5462. (j) Hyster, T. K.; Rovis, T.
J. Am. Chem. Soc. 2010, 132, 10565. (k) Too, P. C.; Wang, Y.-F.; Chiba,
S. Org. Lett. 2010, 12, 5688. (l) Rakshit, S.; Grohmann, C.; Besset, T.;
Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (m)Wang, H.; Grohmann,
C.; Nimphius, C.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 19592. (n)
Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132,
9585. (o) Besset, T.; Kuhl, N.; Patureau, F. W.; Glorius, F. Chem.;Eur. J.
2011, 17, 7167. (p) Patureau, F. W.; Nimphius, C.; Glorius, F. Org. Lett.
2011, 13, 6346. (q) Zhang, J.; Loh, T.-P. Chem. Commun. 2012, 48, 11232.
(6) For the rhodium(III)-catalyzed direct addition of arene CꢀH
bonds to aldehydes, see: (a) Yang, L.; Correia, C. A.; Li, C.-J. Adv.
Synth. Catal. 2011, 353, 1269. (b) Li, Y.; Zhang, X.-S.; Chen, K.; He,
K.-H.; Pan, F.; Li, B.-J.; Shi, Z.-J. Org. Lett. 2012, 14, 636. (c) Park, J.;
Park, E.; Kim, A.; Lee, Y.; Chi, K. W.; Kwak, J. H.; Jung, Y. H.; Kim,
I. S. Org. Lett. 2011, 13, 4390. (d) Yang, Y.; Zhou, B.; Li, Y. Adv. Synth.
Catal. 2012, 354, 2916. (e) Sharma, S.; Park, E.; Park, J.; Kim, I. S. Org.
Lett. 2012, 14, 906. (f) Zhou, B.; Yang, Y.; Li, Y. Chem. Commun. 2012,
48, 5163. (g) Lian, Y.; Bergman, R. G.; Ellman, J. A. Chem. Sci 2012, 3,
3088.
B
Org. Lett., Vol. XX, No. XX, XXXX