B. Saha et al. / Tetrahedron Letters 54 (2013) 2340–2343
2343
HO
O
O
O
S
S
OCH 3
OCH3
N
N
NH2
CHO
7
8
OCH3
N
3
N
NH
H
+
OCH3
1
6
2
9
HO
10
O
O
S
O
S
H2O
N
HN
O
HN
OCH3
O
S
HN
O
OCH3
Path A
8
4a
N
HO
O
HN
O
OCH3
12
O
S
S
OCH3
OCH3
H2N
HN
N
N
11
HN
O
Path B
S
HN
O
OCH3
H3CO
5a
13
Scheme 2. Plausible reaction mechanism
Patron, A. P.; Rogers, D.; Priest, C. D.; Darmohusodo, V. Tetrahedron Lett. 2004,
45, 733; (d) Weber, L.; Wallbaum, S.; Broger, C.; Gubernator, K. Angew. Chem.,
Int. Ed. 1995, 34, 2280; Shaabani, A.; Maleki, A.; Moghimi-Rad, J. J. Org. Chem.
2007, 72, 6309; (f) McFarland, J. W. J. Org. Chem. 1963, 28, 2179.
References and notes
1. (a) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168; (b) Ugi, I. J. Prakt.
Chem. 1997, 339, 499. and references therein; (c) Armstrong, R. W.; Combs, A.
P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123; (d)
Ugi, I. Proc. Estonian Acad. Sci. Chem. 1998, 47, 107; (e) Bienayme, H.; Hulme, C.;
Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321; (f) Lee, D.; Sello, J. K.;
Schreiber, S. L. Org. Lett. 2000, 2, 709.
2. Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234.
3. (a) Dömling, A. Curr. Opin. Chem. Biol. 2002, 6, 306; (b) Dömling, A. Chem. Rev.
2006, 106, 17; (c) Heravi, M. M.; Moghim, S. J. Iran. Chem. Soc. 2011, 8, 306.
4. Ugi, I. Angew. Chem., Int. Ed. 1962, 1, 8.
9. Illgen, K.; Enderle, T.; Broger, C.; Weber, L. Chem. Biol. 2000, 7, 433.
10. Pan, S. C.; List, B. Angew. Chem., Int. Ed. 2008, 47, 3622.
11. (a) Sharma, A.; Li, H. Synlett 2011, 1407; (b) Saha, B.; Sharma, S.; Sawant, D.;
Kundu, B. Synlett 2007, 1591.
12. Baidya, M.; Kobayashi, S.; Mayr, H. J. Am. Chem. Soc. 2010, 132, 4796.
13. General experimental procedure for the synthesis of 4: To a solution of aldehyde 1
(1 mmol) in methanol, amine 2 (1 mmol), isocyanide 3 (1 mmol), and catalyst
pTSIA (20 mol %) were added into a flask. Then the reaction mixture was stirred
for 12–24 h at rt (monitored by TLC and LCMS until no further increase in the
ratio of the desired product vs starting materials). After completion of reaction
the solvent was removed under vacuum to get a crude residue. The crude
residue was purified by silica gel column chromatography using (10–30%)
ethylacetate–hexane to get the pure product 4.
5. (a) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. Engl. 1993, 32, 563; (b) Ugi, I.;
Demharter, A.; Horl, W.; Schmid, T. Tetrahedron 1996, 52, 11657; (c) Portlock,
D. E.; Naskar, D.; West, L.; Ostaszewski, R.; Chen, J. J. Tetrahedron Lett. 2003, 44,
5121; (d) Portlock, D. E.; Ostaszewski, R.; Naskar, D.; West, L. Tetrahedron Lett.
2003, 44, 603; (e) Harriman, G. C. B. Tetrahedron Lett. 1997, 38, 5591; (f) El
Kaim, L.; Gizolme, M.; Grimaud, L.; Oble, J. J. Org. Chem. 2007, 72, 4169.
6. (a) Grassot, J.-M.; Masson, G.; Zhu, J. Angew. Chem., Int. Ed. 2008, 47, 947; (b)
Pirali, T.; Tron, G. C.; Zhu, J. Org. Lett. 2006, 8, 4145; (c) Housseman, C.; Zhu, J.
Synlett 2006, 1777; (d) Sun, X.; Janvier, P.; Zhao, G.; Bienayme, H.; Zhu, J. Org.
Lett. 2001, 3, 877; (e) Ngouansavanh, T.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46,
5775; (f) Zhao, G.; Sun, X.; Bienayme, H.; Zhu, J. J. Am. Chem. Soc. 2001, 123,
6700; (g) Dömling, A.; Beck, B.; Eichelberger, U.; Sakamuri, S.; Menon, S.; Chen,
Q.-Z.; Lu, Y.; Wessjohann, L. A. Angew. Chem., Int. Ed. 2006, 45, 7235; (h)
Dömling, A.; Illgen, K. Synthesis 2005, 662; (i) Kolb, J.; Beck, B.; Almstetter, M.;
Heck, S.; Herdtweck, E.; Dömling, A. Mol. Divers. 2000, 6, 297; (j) Beck, B.;
Larbig, G.; Mejat, B.; Magnin-Lachaux, M.; Picard, A.; Herdtweck, E.; Dömling, A.
Org. Lett. 2003, 1047, 5.
7. (a) Patil, N. T.; Mutyala, A. K.; Lakshmi, P. G. V. V.; Raju, P. V. K.; Sridhar, B. Eur. J.
Org. Chem. 2010, 1999; (b) El Kaim, L.; Gageat, M.; Gaultier, L.; Grimaud, L.
Synlett 2007, 500; (c) Masdeu, C.; Gomez, E.; Williams, N. A. O.; Lavilla, R. Angew.
Chem., Int. Ed. 2007, 46, 3043; (d) Dai, W.-M.; Li, H. Tetrahedron 2007, 63, 12866;
(e) El Kaim, L.; Grimaud, L.; Oble, J. Angew. Chem., Int. Ed. 2005, 44, 7961; (f)
Khan, A. T.; Basha, R. S.; Lal, M.; Mohammad, M. RCS Advances 2012, 2, 5506.
8. (a) Mullen, L. B.; Sutherland, J. D. Angew. Chem., Int. Ed. 2007, 46, 8063; (b)
Tanaka, Y.; Hasui, T.; Suginome, M. Org. Lett. 2007, 9, 4407; Keung, W.; Bakir, F.;
Example 4a: 1H NMR (400 MHz, CDCl3) d 7.47–7.29 (m, 5H), 6.84–6.73 (m, 2H),
6.68 (s, 1H), 6.63–6.54 (m, 2H), 4.52 (s, 1H), 4.18 (s, 1H), 3.75 (s, 3H), 1.32 (s,
9H). 13C NMR (101 MHz, CDCl3) d 170.4, 153.2, 140.9, 139.4, 129.1, 128.4,
127.3, 115.1, 114.8, 65.8, 55.7, 51.0, 28.6. HRMS-ESI (M+1)+: m/z calcd for
C19H25N2O2 313.19105, found 313.19083.
14. General experimental procedure for the synthesis of 5: To a solution of aldehyde 1
(1 mmol) in methanol, amine 2 (2 mmol), isocyanide 3 (1 mmol), and pTSIA
(20 mol %) were added into a flask. Then the reaction mixture was stirred for
12–24 h at rt (monitored by TLC and LCMS until no further increase in the ratio
of the desired product vs starting materials). After the completion of reaction
the solvent was removed under vacuum to get a crude residue. The crude
residue was purified by silica gel column chromatography using (10–30%)
ethylacetate–hexane to get the pure product 5.
Example 5a: 1H NMR (400 MHz, CDCl3) d 7.34–7.21 (m, 3H), 7.15 (dd, J = 6.5,
2.9 Hz, 2H), 6.88–6.77 (m, 2H), 6.68–6.54 (m, 4H), 6.46–6.32 (m, 2H), 6.00 (s,
1H), 4.86 (s, 1H), 3.77 (s, 3H), 3.71 (s, 3H), 3.51 (s,1H), 1.46 (s, 9H). 13C NMR
(101 MHz, CDCl3) d 154.8, 154.4, 153.2, 144.0, 141.3, 140.1, 128.7, 128.1, 128.0,
122.9, 114.9, 114.7, 113.9, 60.5, 55.7, 55.5, 50.8, 28.4. HRMS-ESI (M+1)+: m/z
calcd for C26H32N3O2 418.24890, found 418.24861. The detailed information on
X-ray analysis of compound 5a will be reported in Acta Crystallogr. E.