F. Nador et al. / Applied Catalysis A: General 455 (2013) 39–45
45
Fig. 3. Recovery and recycling of the catalyst in the synthesis of propargylamines.
low (10 mg), thus the loss of only 1 mg of catalyst when handling
the sample, means loss of 10% of the total mass of catalyst.
(d) V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. Int. Ed.
41 (2002) 2596–2599;
(e) M. Meldal, C.W. Tornøe, Chem. Rev. 108 (2008) 2952–3015.
[5] D. Astruc, Nanoparticles and Catalysis, Wiley-VCH Verlag GmbH & Co, KGaA,
Weinheim, 2008, chapter 1.
4. Conclusions
[6] (a) J. Zhang, Y. Wang, H. Ji, Y. Wei, N. Wu, B. Zuo, Q. Wang, J. Catal. 229 (2005)
114–118;
A new copper-based catalyst composed of copper nanoparticles
(ca. 3.0 nm) on silica coated maghemite nanoparticles (5–30 nm),
was readily prepared under mild conditions and completely charac-
terized. It proved to be an efficient heterogeneous catalyst in three
important alkyne transformations of wide synthetic utility. The cat-
alyst could be easily recycled by means of an external magnet and
reused without significant loss of catalytic activity. The easy recov-
ery of the catalyst, together with the negligible leaching of metal
species (no detected by AAS) and the high atom economy involved
vations point to a heterogeneous catalytic process, it should not be
discarded that the copper supported nanocatalyst could be acting as
a reservoir for metal species that leach into solution and re-adsorb
[25].
(b) H.M.R. Gardimalla, D. Mandal, P.D. Stevens, M. Yen, Y. Gao, Chem. Commun.
(2005) 4432–4434;
(c) P.D. Stevens, G. Li, J. Fan, M. Yen, Y. Gao, Chem. Commun. (2005) 4435–4437;
(d) J. Lee, D. Lee, E. Oh, J. Kim, Y.-P. Kim, S. Jin, H.-S. Kim, Y. Hwang, J.H. Kwak, J.-G.
Park, C.-H. Shin, J. Kim, T. Hyeon, Angew. Chem. Int. Ed. 44 (2005) 7427–7432;
(e) T.-J. Yoon, J.S. Kim, B.G. Kim, K.N. Yu, M.-H. Cho, J.-K. Lee, Angew. Chem. Int.
Ed. 44 (2005) 1068–1071;
(f) U. Laska, C.G. Frost, G.J. Price, P.K. Plucinski, J. Catal. 268 (2009) 318–328.
[7] A.K. Gupta, M. Gupta, Biomaterials 26 (2005) 3995–4021.
[8] B.C. Zhu, X.Z. Jiang, Appl. Organomet. Chem. 21 (2007) 345–349.
[9] P. Kuhn, A. Alix, M. Kumarraja, B. Louis, P. Pale, J. Sommer, Eur. J. Org. Chem.
(2009) 423–429.
[10] T. Oishi, T. Katayama, K. Yamaguchi, N. Mizuno, Chem. Eur. J. 15 (2009)
7539–7542.
[11] (a) C. Wei, Z. Li, C.-J. Li, Synlett (2004) 1472–1483;
(b) C.-J. Li, Acc. Chem. Res. 43 (2010) 581–590;
(c) W.J. Yoo, L. Zhao, C.-J. Li, Aldrichima Acta 44 (2011) 43–51.
[12] M.J. Aliaga, D.J. Ramón, M. Yus, Org. Biomol. Chem. 8 (2010) 43–46.
[13] (a) M. Laksmi Kantam, V. Swarna Jaya, B. Sreedhar, M. Mohan Rao, B.M.
Choudary, J. Mol. Catal. A Chem. 256 (2006) 273–277;
(b) H. Sharghi, M.H. Beyzavi, A. Safavi, M.M. Doroodmand, R. Khalifeh, Adv.
Synth. Catal. 351 (2009) 2391–2410;
Acknowledgements
(c) H. Sharghi, R. Khalifeh, M.M. Doroodmand, Adv. Synth. Catal. 351 (2009)
207–218;
(d) V. Bénéteau, A. Olmos, T. Boningari, J. Sommer, P. Pale, Tetrahedron Lett. 51
(2010) 3673–3677.
This work was generously supported by the CONICET (Project
no. PIP 738), ANPCyT (Project PICT-2010, no. 669) and SGCyT-UNS
(Project PGI 24/Q044) from Argentina. F. N. also thanks the CONICET
for a doctoral fellowship.
[14] (a) F. Alonso, C. Vitale, G. Radivoy, M. Yus, Synthesis (2003) 443–447;
(b) F. Alonso, Y. Moglie, G. Radivoy, C. Vitale, M. Yus, Appl. Catal. A Gen. 271
(2004) 171–176;
(c) G. Radivoy, F. Alonso, Y. Moglie, C. Vitale, M. Yus, Tetrahedron 61 (2005)
3859–3864.
[15] F. Nador, L. Fortunato, Y. Moglie, C. Vitale, G. Radivoy, Synthesis (2009)
4027–4031.
[16] (a) F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Tetrahedron Lett. 50 (2009)
2358–2362;
(b) F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Eur. J. Org. Chem. (2010) 1875–1884.
[17] (a) F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Adv. Synth. Catal. 352 (2010)
3208–3214;
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.apcata.2013.01.023.
References
(b) F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Org. Biomol. Chem. 9 (2011)
6385–6395;
(c) F. Alonso, Y. Moglie, G. Radivoy, M. Yus, J. Org. Chem. 76 (2011) 8394–8405;
(d) F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Heterocycles 84 (2012) 1033–1044.
[18] M.J. Albaladejo, F. Alonso, Y. Moglie, M. Yus, Eur. J. Org. Chem. (2012)
3093–3104.
[1] P.J. Walsh, A. de Parradi, Angew. Chem. Int. Ed. Engl. 48 (2009) 4679–4682.
[2] (a) C. Glaser, Ber. Dtsch. Chem. Ges. 2 (1869) 422–424;
(b) C. Glaser, Ann. Chem. Pharm. 154 (1870) 137–171;
(c) L. Brandsma, Synthesis of Acetylenes, Allenes and Cumulenes, Elsevier Aca-
demic Press, Amsterdam, 2004, chapter 15;
(d) P. Siemsen, R.C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 39 (2000)
2632–2657;
(e) F. Alonso, M. Yus, ACS Catal. 2 (2012) 1441–1451.
[19] F. Alonso, T. Melkonian, Y. Moglie, M. Yus, Eur. J. Org. Chem. (2011) 2524–2530.
[20] D.D. Perrin, W.L.F. Amarego, Purification of Laboratory Chemicals, Pergamon
Press, Oxford, 1988.
[3] (a) L. Zani, C. Bolm, Chem. Commun. (2006) 4263–4275;
(b) C. C.-J- Li, Acc. Chem. Res. 43 (2010) 581–590;
(c) W.-J. Yoo, L. Zhao, C.-J. Li, Aldrichima Acta 44 (2011) 43–51.
[4] (a) R. Huisgen, G. Szeimies, L. Moebius, Chem. Ber. 98 (1965) 4014–4021;
(b) R. Huisgen, Pure Appl. Chem. 61 (1989) 613–628;
[21] J. Jung, S. Bae, W. Lee, Appl. Catal. B 127 (2012) 148–158.
[22] J.J. Scholten, A.P. Pijpers, M.L. Hustings, Catal. Rev. Sci. Eng. 27 (1985) 151–206.
[23] Th.J. Osinga, B.G. Linsen, W.P. van Beet, J. Catal. 7 (1967) 227–279.
[24] L. Brandsma, H.D. Verkruijsse, B. Walda, Synth. Commun. 21 (1991) 137–139.
[25] For a review, see: L.D. Pachón, G. Rothenberg, Appl. Organomet. Chem. 22
(2008) 288–299.
(c) C.W. Tornøe, C. Christensen, M.J. Meldal, J. Org. Chem. 67 (2002) 3057–3064;