ACS Medicinal Chemistry Letters
Letter
(7) Henke, B. R.; Sparks, S. M. Glycogen phosphorylase inhibitors.
Mini-Rev. Med. Chem. 2006, 6, 845−857.
range and were significantly less efficient than the parent
amides 1a and 1c, respectively. Appending unsubstituted
aromatic groups to the 1,2,4-triazole ring as in 6d and 6f led
to a remarkable strengthening of the inhibition. While 1,2,4-
oxadiazoles 5d and 5f were practically equipotent with the
corresponding amides 1d and 1f, triazoles 6d and 6f inhibited
the enzyme by ∼1 order of magnitude stronger, respectively.
This indicated that the possibility for the formation of a H-
bond was advantageous for the binding, rendering compound
6f to one of the most efficient glucose analogue inhibitors of
GP known to date. Introduction of a t-butyl substituent in the
4-position of the phenyl group as in 6e resulted in a much
weaker inhibitor. This observation may reveal that the active
site of GP, where these compounds may bind to, can not
accommodate a bulky aliphatic moiety.
Further studies to establish the binding peculiarities of these
inhibitors by X-ray crystallographic investigation of the
enzyme−inhibitor complexes as well as molecular dockings to
predict other efficient derivatives based on this skeleton are in
progress.
In conclusion, a new method was elaborated for the synthesis
of hitherto unknown 3-(β-D-glucopyranosyl)-5-substituted-
1,2,4-triazoles. These compounds inhibited rabbit muscle
GPb, and the 5-(2-naphthyl) derivative with its submicromolar
inhibition proved one of the best inhibitors of the enzyme.
(8) Guan, T.; Qian, Y. S.; Tang, X. Z.; Huang, M. H.; Huang, L. F.;
Li, Y. M.; Sun, H. B. Maslinic acid, a natural inhibitor of glycogen
phosphorylase, reduces cerebral ischemic injury in hyperglycemic rats
by GLT-1 up-regulation. J. Neurosci. Res. 2011, 89, 1829−1839.
́
́ ́ ́
(9) Somsak, L.; Czifrak, K.; Toth, M.; Bokor, E.; Chrysina, E. D.;
Alexacou, K. M.; Hayes, J. M.; Tiraidis, C.; Lazoura, E.; Leonidas, D.
D.; Zographos, S. E.; Oikonomakos, N. G. New inhibitors of glycogen
phosphorylase as potential antidiabetic agents. Curr. Med. Chem. 2008,
15, 2933−2983.
(10) Loughlin, W. A. Recent advances in the allosteric inhibition of
glycogen phosphorylase. Mini-Rev. Med. Chem. 2010, 10, 1139−1155.
(11) Praly, J. P.; Vidal, S. Inhibition of glycogen phosphorylase in the
context of type 2 diabetes, with focus on recent inhibitors bound at the
active site. Mini-Rev. Med. Chem. 2010, 10, 1102−1126.
(12) Somsak, L. Glucose derived inhibitors of glycogen phosphor-
́
ylase. C. R. Chim. 2011, 14, 211−223.
(13) Chrysina, E. D.; Chajistamatiou, A.; Chegkazi, M. From
structure-based to knowledge-based drug design through X-ray protein
crystallography: sketching glycogen phosphorylase binding sites. Curr.
Med. Chem. 2011, 18, 2620−2629.
(14) Chrysina, E. D. The prototype of glycogen phosphorylase. Mini-
Rev. Med. Chem. 2010, 10, 1093−1101.
́ ́
(15) Docsa, T.; Czifrak, K.; Huse, C.; Somsak, L.; Gergely, P. The
̈
effect of glucopyranosylidene-spiro-thiohydantoin on the glycogen
metabolism in liver tissues of streptozotocin-induced and obese
diabetic rats. Mol. Med. Rep. 2011, 4, 477−481.
(16) Watson, K. A.; Mitchell, E. P.; Johnson, L. N.; Cruciani, G.; Son,
J. C.; Bichard, C. J. F.; Fleet, G. W. J.; Oikonomakos, N. G.; Kontou,
M.; Zographos, S. E. Glucose analogue inhibitors of glycogen
phosphorylase: from crystallographic analysis to drug prediction
using GRID force-field and GOLPE variable selection. Acta Crystallogr.
1995, D51, 458−472.
ASSOCIATED CONTENT
* Supporting Information
Representative synthetic procedures, enzyme kinetic measure-
ments, and compound characterization. This material is
■
S
̋
(17) Somsak
́
, L.; Kovac
́
s, L.; Tot
́
h, M.; Osz, E.; Szilag
́
yi, L.;
AUTHOR INFORMATION
Corresponding Author
*(L.S.) Tel: +3652512900, ext. 22348. Fax: +3652512744. E-
Gyorgydeak, Z.; Dinya, Z.; Docsa, T.; Tot
́
́
h, B.; Gergely, P. Synthesis
̈
■
of and a comparative study on the inhibition of muscle and liver
glycogen phosphorylases by epimeric pairs of D-gluco- and D-
xylopyranosylidene-spiro-(thio)hydantoins and N-(D-glucopyranosyl)
amides. J. Med. Chem. 2001, 44, 2843−2848.
Funding
́
(18) Gyorgydeak, Z.; Hadady, Z.; Felfoldi, N.; Krakomperger, A.;
̈
̈
This work was supported by the Hungarian Scientific Research
Fund (OTKA CK77712, CNK80709, and PD105808) as well
́ ́ ́
Nagy, V.; Toth, M.; Brunyanszky, A.; Docsa, T.; Gergely, P.; Somsak,
L. Synthesis of N-(β-D-glucopyranosyl)- and N-(2-acetamido-2-deoxy-
β-D-glucopyranosyl) amides as inhibitors of glycogen phosphorylase.
Bioorg. Med. Chem. 2004, 12, 4861−4870.
́
́
as TAMOP 4.2.1./B-09/1/KONV-2010-0007 and TAMOP-
4.2.2.A-11/1/KONV-2012-0025 projects implemented through
the New Hungary Development Plan, cofinanced by the
European Social Fund. T.D. thanks the Hungarian Academy of
́
(19) Chrysina, E. D.; Bokor, E.; Alexacou, K.-M.; Charavgi, M.-D.;
Oikonomakos, G. N.; Zographos, S. E.; Leonidas, D. D.;
́
Oikonomakos, N. G.; Somsak, L. Amide-1,2,3-triazole bioisosterism:
́
Sciences for a Janos Bolyai research fellowship.
the glycogen phosphorylase case. Tetrahedron: Asymm. 2009, 20, 733−
Notes
740.
The authors declare no competing financial interest.
́ ́
(20) Konya, B.; Docsa, T.; Gergely, P.; Somsak, L. Synthesis of
heterocyclic N-(β-D-glucopyranosyl)carboxamides for inhibition of
glycogen phosphorylase. Carbohydr. Res. 2012, 351, 56−63.
REFERENCES
■
́
́
(21) Bokor, E.; Docsa, T.; Gergely, P.; Somsak, L. Synthesis of 1-(D-
(1) Smith, H. J.; Simons, C. Enzymes and Their Inhibition, Drug
Development; CRC Press: Boca Raton, FL, 2005.
(2) Lima, L. M. A.; Barreiro, E. J. Bioisosterism: a useful strategy for
molecular modification and drug design. Curr. Med. Chem. 2005, 12,
23−49.
(3) Kurukulasuriya, R.; Link, J. T.; Madar, D. J.; Pei, Z.; Richards, S.
J.; Rohde, J. J.; Souers, A. J.; Szczepankiewicz, B. G. Potential drug
targets and progress towards pharmacologic inhibition of hepatic
glucose production. Curr. Med. Chem. 2003, 10, 123−153.
(4) Ross, S. A.; Gulve, E. A.; Wang, M. H. Chemistry and
biochemistry of type 2 diabetes. Chem. Rev. 2004, 104, 1255−1282.
(5) Agius, L. New hepatic targets for glycaemic control in diabetes.
Best Pract. Res., Clin. Endocrinol. Metab. 2007, 21, 587−605.
(6) Baker, D. J.; Greenhaff, P. L.; Timmons, J. A. Glycogen
phosphorylase inhibition as a therapeutic target: a review of the recent
patent literature. Expert Opin. Ther. Patents 2006, 16, 459−466.
glucopyranosyl)-1,2,3-triazoles and their evaluation as glycogen
phosphorylase inhibitors. Bioorg. Med. Chem. 2010, 18, 1171−1180.
́
́
(22) Toth, M.; Kun, S.; Bokor, E.; Benltifa, M.; Tallec, G.; Vidal, S.;
́
Docsa, T.; Gergely, P.; Somsak, L.; Praly, J.-P. Synthesis and
structure−activity relationships of C-glycosylated oxadiazoles as
inhibitors of glycogen phosphorylase. Bioorg. Med. Chem. 2009, 17,
4773−4785.
(23) Benltifa, M.; Vidal, S.; Fenet, B.; Msaddek, M.; Goekjian, P. G.;
́
Praly, J.-P.; Brunyanszki, A.; Docsa, T.; Gergely, P. In the search of
glycogen phosphorylase inhibitors: 5-substituted 3-C-glucopyranosyl-
1,2,4-oxadiazoles from β-D-glucopyranosyl cyanides upon cyclization of
O-acyl-amidoxime intermediates. Eur. J. Org. Chem. 2006, 4242−4256.
́ ́
(24) Hadady, Z.; Toth, M.; Somsak, L. C-(β-D-glucopyranosyl)
heterocycles as potential glycogen phosphorylase inhibitors. Arkivoc
2004, (vii), 140−149.
C
dx.doi.org/10.1021/ml4001529 | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX